
HELIUM
Hybrid Encapsulation Layer for IP and UDP Messages

Ben Schwartz
IETF 102, Dispatch

Goal: UDP Proxying for HTTP/QUIC and Beyond
● HTTP is self-proxying: GET http://other.domain.example/foo HTTP/1.1
● HTTPS is too: CONNECT other.domain.example:443 HTTP/1.1
● What about HTTP/QUIC?
● What about …

○ WebRTC (currently TURN)
○ VPNs (like OpenConnect, OpenVPN, L2TP)
○ In-betweeny things (e.g. UDP + ICMP)

● Can we find a protocol that
○ supports all these use cases
○ is simple to define
○ can run on top of HTTP
○ doesn’t require HTTP
○ enables good performance

What’s a UDP proxy really (e.g. TURN)?
● UDP payload
● Outbound packets

○ Destination IP
○ Destination UDP port
○ DONT-FRAGMENT*

● Inbound packets
○ Source IP
○ Source UDP port

● Stable port mapping
○ Bound port to tell peer

HELIUM Protocol Stack

UDP

IP

Tiny wrapper

Awesome Transport

UDP

IP

HELIUM Inner
Protocol

Awesome Transport

IP

HIP-CBOR

WebSocket

TLS

TCP

IP

Idea HELIUM (abstract) HELIUM-WebSocket

UDP

HELIUM Inner Protocol in a nutshell: 3 msg types
● Sending a packet: outbound

○ optional number id: to request a “meta” reply
○ optional string domain: to override the destination address with a DNS name
○ optional number dns: to override the destination address with a DNS server
○ packet!

● Receiving a packet: inbound
○ uint32 timestamp: when the packet was received (microseconds)
○ packet!

● Finding out what happened to your packet: meta
○ number id: the outbound packet id
○ optional integer[] errors: any error codes that prevented the packet from being sent
○ uint32 timestamp: when the packet was sent (microseconds)
○ packet prefix including any modified portions of the outbound packet

IP as a proxy protocol, ICMP-style
If the proxy modified the outbound packet in any way, the "meta"

message MUST contain a prefix of the outbound packet as sent,

including any parts that were modified. Changes might include the

source IP, destination IP, TTL, DSCP priority, UDP source port, etc.

● Inspired by ICMP error responses
● Reuse IP as the client-proxy protocol: no need to invent a new one
● No artificial limitations: try to send whatever you want and see how the proxy

mangled it.
○ Not limited to UDP! Can do UDP + ICMP (PMTUD! Traceroute!) or even a full VPN.
○ Can potentially proxy TTL, ECN, DSCP, Jumbograms, fragments, etc.

Other tricksy features
● UDP + ICMP mode can be implemented without root
● Microsecond timestamps for delay-based congestion control
● Domain override: minimize latency for named destinations
● DNS server index: send advanced queries to the proxy’s recursives
● Proxy can offload fragment reassembly to the client
● Bind an address by sending to 0.0.0.0 and inspecting the prefix in the reply

HELIUM-WebSocket Proxy Discovery
CONNECT foo.example:443 HTTP/1.1
Host: proxy.example
Proxy-Authorization: basic YWxhZGRpbjpvc
…

HTTP/1.1 200 OK
Helium-Proxy-URL: wss://proxy.example/foo

GET /foo HTTP/1.1
Host: proxy.example:443
Upgrade: websocket
Connection: Upgrade
Proxy-Authorization: basic YWxhZGRpbjpvc
Sec-WebSocket-Protocol: helium-cbor
Sec-WebSocket-Extensions: permessage-deflate
…

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Protocol: helium-cbor
Sec-WebSocket-Extensions: permessage-deflate

Alternative taglines
● “So that’s what the NAT did”
● “A proxy is an honest middlebox”
● “ICMP for the JSON era”

