Opportunistic Encryption of Email and Messaging

ARTAREA @ IETF-102, Mon July 16, 2018

draft-birk-pep-02
draft-marques-pep-email-01
draft-marques-pep-handshake-00
draft-marques-pep-rating-00
draft-birk-pep-trustwords-02

Bernie Hoeneisen / Hernâni Marques

p≡p

Privacy by Default.
Background

- We aim to make text communications (i.e. email, chat, ...) **private by default**
- “Good” tools for privacy already exist (e.g. PGP/OpenPGP)
- **However:**
 - Most users are unable to use existing encryption tools like GnuPG (properly)
- Need to fix this usability challenge by automation
- Not just “good”, but **easy** privacy
pEp – pretty Easy privacy

- The pEp architecture consists of several building blocks
- Existing RFCs are used whenever available (and usable)
- Some pieces are currently missing (or incomplete)
- We intend to document the missing pieces in the IETF
Example Msg. flow (simplified)

A

Privacy Status for B: Unencrypted

Auto-Generate key pair (if no key yet)

A sends message to B (public key attached), **not encrypted**

B sends message to A (public key attached), **encrypted**

A and B (successfully) compare their Trustwords over an alternative channel (e.g. phone line)

Privacy Status for B: Trusted

Privacy Status for B: Encrypted

Privacy Status for A: Trusted

Privacy Status for A: Encrypted

Privacy Status for A: Unencrypted

B

Auto-Generate key pair (if no key yet)
Goal
- Define missing pieces for email

Motivation
- Current systems do not encrypt all privacy-sensitive information (e.g. subject)

Main use-case
- Automatically encrypted email in opportunistic encryption scenarios

Method
- Strict message formats for privacy and integrity
- Automatic key generation, distribution, and import
pEp Email Format 2

Outer message (Subject: pEp)

Inner message: encrypted original email

Original headers & content

Public key

Privacy by Default.
Goal
- Easy understandable representation of Privacy Status

Motivation
- Reveal Privacy Status of a communication to users

Main use-case
- Presentation of Privacy Status between users
- Presentation of Privacy Status of particular messages

Method
- Defining different Privacy Ratings
- Mapping Privacy Ratings to colors (traffic light semantics)
draft-marques-pep-handshake

- **Goal**
 - Define easy authentication process for communication partners
- **Motivation**
 - For most users current authentication methods are too cumbersome and therefore rarely (correctly) applied
- **Main use-case**
 - Process to establish trust between communication partners
- **Method:**
 - Mapping of combined fingerprints to human readable output using Trustwords
draft-birk-pep-trustwords

- Goal
 - Mapping of hexadecimal stings to natural language words
 - Public registration of Trustwords in different languages
- Motivation
 - Word lists need to be the same for every implementation
- Main use-case
 - Easy comparison of fingerprints or handshake results to establish a trust relationship
- Method
 - Create IANA registry
Running Code: www.pep.software

- p≡p for Outlook (release: add-on)
- p≡p for Android (release: app)
- p≡p for Thunderbird (release: as Enigmail 2.0 add-on with p≡p integration)
- p≡p for iOS (internal beta)
Where can IETF help?

- Improve compatibility to what’s out in the wild
- MIME-based message formats
- Define missing URI schemes
- IANA registry to support trust establishment
- Private Key Synchronization
 - to fit multi-device scenarios;
 - in email via ActiveSync/IMAP
- ...

Privacy by Default.
Places to touch base / join in

- Mailinglist discussion:
 - dispatch@ietf.org

- Other communication channels:
 - IRC: irc.freenode.net (#PrettyEasyPrivacy)
 - Web forum: https://pep.community/

- Contact us directly:
 - hernani@pep.foundation / bernie@ucom.ch
Questions / Discussion