
DNS-SD SERVICE
REGISTRATION

Ted Lemon <mellon@fugue.com>
Stuart Cheshire <cheshire@apple.com>

STATUS
➤ Document was expired

➤ Update was posted prior to this IETF (-01)

➤ Discussion ensued on mailing list (thanks, Toke!)

➤ Second update, posted IETF Monday

➤ Call for adoption is underway

➤ Document is actually in pretty good shape

➤ Could use some review

�2

WHAT IT DOES
➤ Provides a lightweight process services can use to register in

the DNS

➤ Provides first-come, first-served protection for naming

➤ Provides garbage collection for

➤ Claimed names (30 days? 14 days?)

➤ Service registrations (2 hours?)

➤ Anycast single-transaction updates for constrained devices

➤ TCP updates for less-constrained devices

�3

ISSUES
➤ This uses DNS update, but requires custom functionality

➤ I don't think there's a way around this that allows ad-hoc
registration, which is an obvious requirement

�4

USE OF .LOCAL
➤ Registrations update .local

➤ This is not where the registration will actually go—it will go
to dr._dns_sd.<domain> or x.y.z.q.in-addr.arpa or
a.b.c.d.q.o.m.g.s.o.m.a.n.y.d.i.g.i.t.s.ip6.arpa.

➤ Are we okay with this?

�5

DOES NOT SUPPORT INTERNAL NATS
➤ A Registration for an IPv4 address will only be reachable if

➤ the IPv4 address is global or

➤ the user of the service is in the same RFC1918 routing
domain

➤ I think this is okay

�6

EVERY A/AAAA RECORD REQUIRES A SEPARATE REGISTRATION
➤ ∴ if a service wants to support dual-stack, it does two updates

➤ If a service has a ULA and a GUA, it has to pick, or do two updates

➤ Should we give advice about this? e.g.

★ If there is a ULA, use that by default

➤ If configured for public access, use GUA if present

➤ If only GUA present, use that?

➤ What if there's more than one ULA or GUA?

➤ Alternative: let hosts update all addresses at once

➤ Is that actually better?

➤ What are the risks?
�7

ONLY DNS-SD RECORDS SUPPORTED
➤ Very restrictive about what constitutes a Registration

➤ Service Name: only PTR, no delete

➤ Service Instance Name: only SRV and TXT

➤ Forward Mapping: only A or AAAA, plus required KEY

➤ Reverse Mapping: only PTR

➤ Service Name must point to Service Instance Name in update

➤ Service Instance Name SRV must point to Forward Mapping in update

➤ Reverse Mapping must point to Forward Mapping

➤ Benefit: we don't allow random updates

➤ Disadvantage: we don't allow random updates

�8

TOKE'S CLOUD-BASED SOLUTION
➤ The idea is that the stateful part of the service is not on the

local network

➤ This means that for RFC1918 addresses, IP source address
validation isn't going to work end-to-end.

➤ To make this work, I think that you need a (mostly) stateless
relay on the local network which validates the Registration
and then uses TSIG or SIG(0) with its own key to do regular
RFC2136-style updates to the cloud server

➤ Nothing technically hard about this, but do we need to specify
it?

�9

TOKE'S CLOUD SERVER, TAKE 2
➤ If we want public services,

➤ combine this with PCP

➤ cloud update points to PCP-assigned port on home router

➤ which is mapped to the internal IP address of the service

➤ now the service is publicly reachable

➤ still requires a relay

➤ Do we care about this use case?

➤ Why not just use IPv6? :)

�10

BACKWARDS COMPATIBILITY
➤ The document talks about backward compatibility

➤ Do we care about this?

➤ If so, probably needs more detail.

�11

NEXT STEPS
➤ Despite being in CFA, I think document is actually nearly

ready to publish

➤ If you don't think that, or are skeptical, please review and
send comments

➤ I would like to move quickly with this

➤ What do you think?

�12

