
GitHub for Working Groups

WG Chairs Lunch, IETF 102
Martin Thomson



Menu

Why?

Managing Discussion

Established Practices



Why

Source control

Issue management

Transparency

Large community



Source Control

https://github.com/quicwg/base-drafts


Source Control

https://github.com/tlswg/tls13-spec


Issue and Change Management

Issue tracking

Change management (pull requests)

Reviewing tools

Both integrated with revision control



Issues

https://github.com/quicwg/base-drafts/issues


Threaded Discussion

https://github.com/quicwg/base-drafts/issues/904


Pull Requests (PRs)

https://github.com/quicwg/base-drafts/pulls


Code^WChange Review

https://github.com/quicwg/base-drafts/pull/1514


Transparency

Progress on issues and text is open

History of changes is maintained

Editors can get rapid feedback on changes



Large Community

Tools that are well understand

Makes contributions more accessible

Improved feedback cycle



Managing Discussion

Discussion has a tendency to fracture… badly

Chairs need to decide how they want to manage this



All Discussion on <wg>@ietf.org

This is the “safest” policy

Limit to editorial comments on issues and PRs

Needs constant reminders to steer discussion

Used effectively for several groups



Discussion on GitHub

More natural

Note well implications

Always take big items to the list

Take care to avoid substantive discussion on PRs

… these turn into a giant mess



Discussion Policy

Be very clear with the working group

Send email explaining expectations

Monitor discussion and steer it as needed

Use CONTRIBUTING.md



Sample Contribution Policy

https://github.com/quicwg/base-drafts/blob/master/CONTRIBUTING.md


Established Practices

Organizations

Ownership

Repository Management

Issues

Continuous Integration



Working Group == Organization

https://github.com/capport-wg


Ownership and Permissions

Chairs (or responsible AD) own the organization

Chairs (and responsible AD) have admin privileges

Each separate work item has a repository

Editors are added to teams

Teams are given commit access to their repository



Repositories

Editors are responsible for maintaining the repository

Chairs should not commit changes, merge PRs, etc…

One draft per repository is easier to manage

...unless drafts are closely related (use judgment)



Use Markdown

It is easier to use

...especially for IETF newcomers

You get more and better contributions

Both variants are good: kramdown-rfc2629 and mmark 

https://github.com/cabo/kramdown-rfc2629
https://github.com/miekg/mmark


Issue Management

Labels can be very useful

A design or editorial distinction can help

For multiple docs, labels can help with sorting

Issues can be assigned; review can be requested for PRs

Milestones and the project board might help



Continuous Integration

This is 
GREAT

https://github.com/jariarkko/draft-iab-internet-consolidation


Continuous Integration

...but reading 
this is awful



Continuous Integration

CI systems are designed to check your code

Tools exist to both check that the draft is valid

… and maintain a readable copy of the latest



Example README.md

https://github.com/quicwg/base-drafts/blob/master/README.md


The Latest Copy



Previews of Branches

https://quicwg.org/base-drafts/


Toolchain

https://github.com/martinthomson/i-d-template

Build changes

CI integration for validating changes and previews

Automated submission to datatracker

Also produces diffs and manages back for issue status

https://github.com/martinthomson/i-d-template


Contributing

Time permitting, we will “fix” an issue in a draft



More Information

https://unicorn-wg.github.io/github-bcp/

Or discuss: wgchairs@ietf.org

https://unicorn-wg.github.io/github-bcp/draft-thomson-github-bcp.html
mailto:wgchairs@ietf.org

