Alt-Svc SNI and DNS ALTSVC

Mike Bishop and Ben Schwartz HTTPBIS, IETF 102

Alt-Svc SNI in a nutshell

Alt-Svc:

h2="www.example.com:443";ma=2635200;persist=true;sni=www.example.com

"For queries to this domain in the next 30 days, on any network, open a socket to www.example.com:443, ask for www.example.com, and use HTTP/2."

- Alt-Svc is used for protocol upgrades and load balancing
- Currently (without Alt-Svc SNI), the client maintains the original SNI when contacting the new server
- If the first certificate doesn't match the original host, use Secondary Certificate Authentication to get the right certificate

Certificate Validation Rules (new and improved!)

Goal: Maximize flexibility while ensuring defense against an active adversary

The server MUST return a valid certificate which covers at least one of the following:

- The hostname indicated in the SNI extension
- The hostname of the origin that published the alternative
- The hostname used for connecting to the alternative

The client MUST validate the certificate in the handshake for authenticity according to [RFC2818] and ensure that it is valid for **at least one of these names**. Clients SHOULD NOT accept certificates issued to the IP address of the alternative unless the alternative is specified as an IP literal.

DNS ALTSVC in a nutshell

_443._https.www.example.com. 30D IN ALTSVC

"h2=\":443\";persist=true;sni=innocence.example"

"When connecting to https://www.example.com:443 in the next 30 days, use this value for Alt-Svc."

- Alt-Svc value is human-readable but opaque to the DNS
- No change to Alt-Svc syntax or semantics
- Waiting for an ALTSVC response is optional
- Alt-host can be an IP address, empty (no change), or a name (needs lookup)
- **New**: Multiple RRs for load-balancing, multiple hosts per RR for fallback

Alt-Svc SNI + DNS ALTSVC	ESNI
Can accelerate Alt-Svc	Never improves performance (currently)
Adds a roundtrip when the alt-host is not in the initial certificate	Only adds a roundtrip in exception cases
Still helps without DNS, using in-band Alt-Svc	Depends on non-address DNS every TTL
Enables Opportunistic Encryption from the start	Has no effect on plain-text HTTP
Only for HTTP and HTTPS (so far)	Naturally applies to any use of TLS
No change to wire image	The TLS extension is publicly visible
DNS lookups are rare, responses are small	ESNI values are large and have short TTL
DNS entries are human-readable and should not require frequent maintenance	DNS entries are opaque and must be updated periodically by the TLS frontend
Each frontend can be configured independently (e.g. multi-CDN)	All frontends must hold the same ESNI private key
Enables new load balancing and DDOS defenses	Strictly a privacy measure