g Uil

Il ETF

draft-cdn-loop-prevention-00

HTTPBIS WG
IETF 102

S. Ludin, M. Nottingham, N. Sullivan

Background

CDNs are often used as an HTTP reverse proxy for websites.
Headers are used to prevent loops.

e X-Forwarded-For, CF-Connecting-IP, Incap-Proxy-ID, RFC 7239 (Forwarded), Via
It is possible to point one reverse proxy to another.

CDN reverse proxies can be configured to modify/remove loop prevention headers.

Crigin = Proxy Two

‘ Request
-\
' U 4 Proxy One Proxy Two

User

Crigin = Proxy One

Forwarding-Loop Attacks in Content Delivery
Networks

Jianjun Chen*'¥, Jian Jiang§, Xiaofeng Zheng*’fi, Haixin Duant#9,
Jinjin Liang*”‘, Kang Lil, Tao Wan**, Vern PaxsontY,

*Department of Computer Science and Technology, Tsinghua University
TInstitute for Network Science and Cyberspace, Tsinghua University

Tsinghua National Laboratory for Information Science and Technology
{chenjjl3, zhengxfl2, liangjj09}€mails.tsinghua.edu.cn, duanhx@tsinghua.edu.cn
§University of California, Berkeley jiangjian@berkeley.edu
Ynternational Computer Science Institute vern@icir.org
”Depanment of Computer Science, University of Georgia kangli@cs.uga.edu

Abstract—We describe how malicious customers can attack
the availability of Content Delivery Networks (CDNs) by creating
forwarding loops inside one CDN or across multiple CDNs. Such
forwarding loops cause one request to be processed repeatedly or
even indefinitely, resulting in undesired resource consumption and
potential Denial-of-Service attacks. To evaluate the practicality
of such forwarding-loop attacks, we examined 16 popular CDN
providers and found all of them are vulnerable to some form of
such attacks. While some CDNs appear to be aware of this threat
and have adopted specific forwarding-loop detection mechanisms,
we discovered that they can all be bypassed with new attack tech-
niques. Although conceptually simple, a comprehensive defense
requires collaboration among all CDNs. Given that hurdle, we
also discuss other mitigations that individual CDN can implement
immediately. At a higher level, our work underscores the hazards
that can arise when a networked system provides users with
control over forwarding, particularly in a context that lacks a
single point of administrative control.

**Huawei Canada tao.wan@huawei.com

In this work we present “forwarding-loop” attacks, which
allow malicious CDN customers to attack CDN availability
by creating looping requests within a single CDN or across
multiple CDNs. Forwarding-loop attacks allow attackers to
massively consume CDN resources by building up a large
number of requests (or responses) circling between CDN
nodes. The impact can become more severe in the (common)
case where attackers can manipulate DNS records to dynami-
cally control a loop’s IP-level routing on a fine-grained basis.

Although many CDN providers have internal mechanisms
(such as appending custom HTTP headers like CloudFlare’s
CF-Connecting-IP [19]) to detect repeated requests when
they circle back, we find that an attacker can bypass such
defense mechanisms by using features offered by some
other CDNs to filter HTTP headers. Our experiments with
16 commercial CDNs show that all of them are vulnerable

iy Y e e DB Wi e TR e o SEEL, M B e Bl B R

RFC 7230 Section 5.7.1. “Via”

For example, a request message could be sent from an HTTP/1.0 user agent to an internal proxy
code-named "fred", which uses HTTP/1.1 to forward the request to a public proxy at p.example.net, which
completes the request by forwarding it to the origin server at www.example.com. The request received by
www.example.com would then have the following Via header field:

Via: 1.0 fred, 1.1 p.example.net

A sender SHOULD NOT combine multiple entries unless they are all under the same organizational
control and the hosts have already been replaced by pseudonyms. A sender MUST NOT combine entries

that have different received-protocol values.

Via is broken by default

11S6: Set the variable "HcNoCompressionForProxies" to FALSE like so: in the IS
metabase properties.
HcNoCompressionForProxies="FALSE"

11S7: Set the variables "noCompressionForHttp10” and "noCompressionForProxies”
to False in your server configuration.

noCompressionForHttp10="FALSE"

noCompressionForProxies="FALSE"

nginx: Add gzip_proxied to your configuration

Apache: Apache's mod_deflate (up to and including 2.4) will compress response
bodies when the Via header is present, and should therefore require no changes.

u/\mm

Jun 2018
m Apache: 22%

z = Microsoft: 37%
Y = Sun: 0%
m nginx: 21%
m Google: 1%
2 A0 W\ WD m NCSA: 0%
QM 90" 90
Q’LV\OQ ?e‘o?« y ¥ Other: 19%

\Nb

-
)

—— Apache
—— Microsoft
—— Sun
—— nginx
—— Google
—— NCSA
—— Other

Dedicated header: CDN-Loop

CDN-Loop = #cdn-id
cdn-id = token *(OWS ";" OWS parameter)

For example:

CDN-Loop: FooCDN, barcdn; host="foo123.bar.cdn"
CDN-Loop: baz-cdn; abc="123"; def="456", anotherCDN

Requirements: CDN-Loop header

e Conforming Content Delivery Networks SHOULD add a value to this
header field to all requests they generate or forward (creating the header if
necessary).

e To be effective, intermediaries - including Content Delivery Networks
MUST NOT remove this header field, or allow it to be removed (e.g.,
through configuration) and servers (including intermediaries) SHOULD
NOT use it for other purposes.

Alternative proposals

RFC 7239: Forwarded HTTP Extension
4. Forwarded HTTP Header Field

]

If the request is passing through several proxies,
each proxy can add a set of parameters; it can
also remove previously added "Forwarded"
header fields.

e Ambiguous?

RFC 7231 5.1.2. Max-Forwards
4. Forwarded HTTP Header Field

Each intermediary that receives a TRACE or
OPTIONS request containing a Max-Forwards
header field MUST check and update its value
prior to forwarding the request. If the received
value is zero (0), the intermediary MUST NOT
forward the request; instead, the intermediary
MUST respond as the final recipient.

[.]

A recipient MAY ignore a Max-Forwards header
field received with any other request methods.

g Uil

Il ETF

draft-cdn-loop-prevention-00

HTTPBIS WG
IETF 102

S. Ludin, M. Nottingham, N. Sullivan

