draft-ietf-i2nsf-capability-02

Development Plans

L. Xia, J. Strassner, C. Basile, D. Lopez

I2NSF Meeting,
Montreal, Canada
July 18t 2017

Introduction: the Context

NSFs are defined by Capabilities

0 The set of features to be exposed to other NSFs, independent

of the customer and provider interfaces
0 NSFs can be combined to provide security services

0 Every NSF SHOULD be described with the set of capabilities

it offers.

o0 Capabilities MAY have their access control restricted by
policy

This draft defines

0 The concept of NSF Capabilities and their use using an info
model and a Capability Algebra

o The Capability Algebra enables a template approach to be used to
describe the Capabilities of an NSF.

Conceptually, a Template of Templates

Events, Conditions, and Actions are each Templates

0 Define a structure and organization of MTI attributes
(and optionally, methods) that define behavior

0 Each may have metadata to further describe properties and
operation and/or prescribe behavior
Policy Rule is a Template of Templates

0 Defines a structure and organization of MTI components
of a policy rule

0 Each may have metadata to further describe properties and
operation and/or prescribe behavior

Information Model used to describe the structure and
semantics of these templates in a technology-neutral way

Key Abstractions

Security is independent of physical vs. virtual packaging

Security Is described by one or more Capabilities

0 e.g., this NSF can filter packets (supports Allow and Deny actions) based on

IP addresses (supports conditions IP source and destination)

Policies define how to manage Capabilities
0 e.g. write rules like 'if IP source = 1.2.3.4 then Deny"'

Policies are defined in an object-oriented info model

This enables

0 NSF behavior to be defined using Capabilities

0 Policy Rules to be defined to manage NSF behavior

o Capabilities and Policy Rules can be reused as is, or extended

The ECA Policy Rule Model

The Current Model Uses ECA Policy Rules

0 Events: significant occurrences the NSF is able to react to
0 Conditions: how the NSF decides which actions to apply

0 Actions: what operations to execute

0 PolicyRule: a container that aggregates an Event, a
Condition, and an Action (Boolean) clause

Behavior

0 Actions MAY execute if Event and Condition (Boolean)
clauses BOTH evaluate to TRUE; this is controlled by
resolution strategy and metadata

o Capability Algebra used to make resolution strategy decidable
0 Default actions MAY be specified

Conceptual Operation

External Info Model

SecurityPolicyRule Metadata

0..n
HasSecurityCapability

NSF

SecurityCapability j

0..n

7’

7’

Y

ManagesSecurityCapability _ - |
0..n HasSecurityCapabilityDetail

Exemplary External Info Model (MCM)

| HasPolicyStructure |

TypeS of | ComponentDecoratorDetail |

PolicyRules

Decorator
Pattern

ECAPolicyRule

|[MCMPolicyClause| | | MCMPolicyClauseComponent

+ | | Decoratoxr

________________________ Types of

) Decorated
Clauses in a Objects

PolicyRule

YANG Generation (1)

Let’s review YANG construction guidelines

o0 Three key information modeling concepts that a data model SHOULD
consistently represent: classes, class inheritance, and associations.

o0 Each class in the model is represented by a YANG identity and by a
YANG grouping. The grouping enables us to define classes abstractly.
Each grouping begins with two leaves (either defined in the grouping or
Inherited via a uses clause), which provide common functionality.

o One leaf is used for the system-wide unique identifier for this instance

o The second leaf is an identityref which is set to the identity of the instance. It
Is read-write in the YANG formalism due to restrictions on the use of MUST
clauses.

0 Subclassing is done by defining an identity and a grouping for the new
class. The identity is based on the parent identity, and is given a new
name to represent this class. The new grouping uses the parent grouping.
It refines the entity-class of the parent (the second leaf), replacing the
default value of the entity-class with the correct value for this class.

s

YANG Generation (2)

Associations are represented by the use of instance-identifiers and
association classes. Association classes are classes, using the above
construction, which contain leaves representing the set of instance-
identifiers for each end of the association, along with any other properties
the information model assigns to the association.

The two associated classes each have a leaf with an instance-identifier
that points to the association class instance.

Each instance-identifier leaf is defined with a must clause. That must
clause references the entity-class of the target of the instance-identifier,
and specifies that the entity class type must be the same as, or
subclassed from, a specific named class. Thus, associations can point to
any instance of a selected class, or any instance of any subclass of that
target.

Note: It is impossible in YANG to retain the difference between
associations, aggregations, and compositions. This is mitigated by the use
of association classes.

o

YANG Generation (3)

0 The concrete class tree is constructed as follows. The YANG model
defines a container for each class that is defined as concrete by the
Information model. That container contains a single list, keyed by an
appropriate instance-identifier. The content of the list is defined by a uses
clause referencing the grouping that defines the class.

0 Example on next slide:

Example YANG

module: ietf-supa-policy

+--rw supa-encoding-clause-container

+--rw supa-encoding-clause-list*

+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw

+--rw

entity-class?

supa-policy-ID

supa-policy-name?
supa-policy-object-description?
supa-has-policy-metadata-agg-ptr*
supa-policy-clause-deploy-status
supa-has-policy-clause-part-ptr*
supa-policy-clause-has-decorator-agg-ptr*
supa-encoded-clause-content
supa-encoded-clause-language

+--rw supa-policy-variable-list*

+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw
+--rw

I
I
I
I
I
I
I
I
I
I
I
+--rw supa-policy-variable-container
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

entity-class?

supa-policy-ID

supa-policy-name?
supa-policy-object-description?
supa-has-policy-metadata-agg-ptr*
supa-policy-clause-has-decorator-part-ptr*

supa-has-decorated-policy-component-part-ptr?

supa-pol-clause-constraint*
supa-pol-clause-constraint-encoding?
supa-has-decorated-policy-component-agg-ptr¥*
supa-pol-comp-constraint*
supa-pol-comp-constraint-encoding?
supa-policy-term-is-negated?
supa-policy-variable-name?

[supa-policy-ID]
identityref

string

string

string
instance-identifier
identityref
instance-identifier
instance-identifier
string

enumeration

[supa-policy-ID]
identityref

string

string

string
instance-identifier
instance-identifier
instance-identifier
string

identityref
instance-identifier
string

identityref
boolean

string

11

Questions?

“Create like a god. Command like a king. Work like a slave”
- Constantin Brancusi

