
draft-ietf-i2nsf-capability-02
Development Plans

L. Xia, J. Strassner, C. Basile, D. Lopez

I2NSF Meeting,
Montreal, Canada

July 18th, 2017

NSFs are defined by Capabilities

The set of features to be exposed to other NSFs, independent
of the customer and provider interfaces

NSFs can be combined to provide security services

Every NSF SHOULD be described with the set of capabilities
it offers.

Capabilities MAY have their access control restricted by
policy

This draft defines

The concept of NSF Capabilities and their use using an info
model and a Capability Algebra

The Capability Algebra enables a template approach to be used to
describe the Capabilities of an NSF.

2

Introduction: the Context

Events, Conditions, and Actions are each Templates

Define a structure and organization of MTI attributes
(and optionally, methods) that define behavior

Each may have metadata to further describe properties and
operation and/or prescribe behavior

Policy Rule is a Template of Templates

Defines a structure and organization of MTI components
of a policy rule

Each may have metadata to further describe properties and
operation and/or prescribe behavior

Information Model used to describe the structure and
semantics of these templates in a technology-neutral way

3

Conceptually, a Template of Templates

Security is independent of physical vs. virtual packaging

Security is described by one or more Capabilities

e.g., this NSF can filter packets (supports Allow and Deny actions) based on

IP addresses (supports conditions IP source and destination)

Policies define how to manage Capabilities

e.g. write rules like 'if IP source = 1.2.3.4 then Deny'

Policies are defined in an object-oriented info model

This enables

NSF behavior to be defined using Capabilities

Policy Rules to be defined to manage NSF behavior

Capabilities and Policy Rules can be reused as is, or extended

4

Key Abstractions

The Current Model Uses ECA Policy Rules

Events: significant occurrences the NSF is able to react to

Conditions: how the NSF decides which actions to apply

Actions: what operations to execute

PolicyRule: a container that aggregates an Event, a

Condition, and an Action (Boolean) clause

Behavior

Actions MAY execute if Event and Condition (Boolean)

clauses BOTH evaluate to TRUE; this is controlled by

resolution strategy and metadata

Capability Algebra used to make resolution strategy decidable

Default actions MAY be specified
5

The ECA Policy Rule Model

Conceptual Operation

6

External Info Model

SecurityPolicyRule NSFMetadata

SecurityCapability

HasSecurityCapability

HasSecurityCapabilityDetail

0..n

0..n

ManagesSecurityCapability

0..n

0..1

Exemplary External Info Model (MCM)

7

Decorator

Pattern

Objects IN A PolicyRule

Types of

PolicyRules

Types of

Decorated

ObjectsClauses in a

PolicyRule

ECAPolicyRule

Let’s review YANG construction guidelines

Three key information modeling concepts that a data model SHOULD
consistently represent: classes, class inheritance, and associations.

Each class in the model is represented by a YANG identity and by a
YANG grouping. The grouping enables us to define classes abstractly.
Each grouping begins with two leaves (either defined in the grouping or
inherited via a uses clause), which provide common functionality.

One leaf is used for the system-wide unique identifier for this instance

The second leaf is an identityref which is set to the identity of the instance. It
is read-write in the YANG formalism due to restrictions on the use of MUST
clauses.

Subclassing is done by defining an identity and a grouping for the new
class. The identity is based on the parent identity, and is given a new
name to represent this class. The new grouping uses the parent grouping.
It refines the entity-class of the parent (the second leaf), replacing the
default value of the entity-class with the correct value for this class.

8

YANG Generation (1)

Associations are represented by the use of instance-identifiers and
association classes. Association classes are classes, using the above
construction, which contain leaves representing the set of instance-
identifiers for each end of the association, along with any other properties
the information model assigns to the association.

The two associated classes each have a leaf with an instance-identifier
that points to the association class instance.

Each instance-identifier leaf is defined with a must clause. That must
clause references the entity-class of the target of the instance-identifier,
and specifies that the entity class type must be the same as, or
subclassed from, a specific named class. Thus, associations can point to
any instance of a selected class, or any instance of any subclass of that
target.

Note: It is impossible in YANG to retain the difference between
associations, aggregations, and compositions. This is mitigated by the use
of association classes.

9

YANG Generation (2)

The concrete class tree is constructed as follows. The YANG model
defines a container for each class that is defined as concrete by the
information model. That container contains a single list, keyed by an
appropriate instance-identifier. The content of the list is defined by a uses
clause referencing the grouping that defines the class.

Example on next slide:

10

YANG Generation (3)

module: ietf-supa-policy

+--rw supa-encoding-clause-container

| +--rw supa-encoding-clause-list* [supa-policy-ID]

| +--rw entity-class? identityref

| +--rw supa-policy-ID string

| +--rw supa-policy-name? string

| +--rw supa-policy-object-description? string

| +--rw supa-has-policy-metadata-agg-ptr* instance-identifier

| +--rw supa-policy-clause-deploy-status identityref

| +--rw supa-has-policy-clause-part-ptr* instance-identifier

| +--rw supa-policy-clause-has-decorator-agg-ptr* instance-identifier

| +--rw supa-encoded-clause-content string

| +--rw supa-encoded-clause-language enumeration

+--rw supa-policy-variable-container

| +--rw supa-policy-variable-list* [supa-policy-ID]

| +--rw entity-class? identityref

| +--rw supa-policy-ID string

| +--rw supa-policy-name? string

| +--rw supa-policy-object-description? string

| +--rw supa-has-policy-metadata-agg-ptr* instance-identifier

| +--rw supa-policy-clause-has-decorator-part-ptr* instance-identifier

| +--rw supa-has-decorated-policy-component-part-ptr? instance-identifier

| +--rw supa-pol-clause-constraint* string

| +--rw supa-pol-clause-constraint-encoding? identityref

| +--rw supa-has-decorated-policy-component-agg-ptr* instance-identifier

| +--rw supa-pol-comp-constraint* string

| +--rw supa-pol-comp-constraint-encoding? identityref

| +--rw supa-policy-term-is-negated? boolean

| +--rw supa-policy-variable-name? string
11

Example YANG

Questions?

Questions?

“Create like a god. Command like a king. Work like a slave”

- Constantin Brancusi

