Enabling ICN in 3GPP's 5GC Architecture

(draft-ravi-icnrg-5gc-icn-02)

Ravi Ravindran, Prakash Suthar, Dirk Trossen, Greg White

Ravi.Ravindran@Huawei.com

psuthar@cisco.com

Dirk.trossen@interdigital.com

Greg.white@cablelabs.com

IETF/ICNRG, July, 2018, Montreal

Draft Objectives

- Explore opportunities of deploying ICN in 3GPP's 5GC architecture
- Motivations include:
 - Flatter Architecture, related work going on in DMM too
 - Benefits from ICN enabled receiver-oriented transport, Storage/Caching, Seamless Mobility, network integrated edge computing
 - New ways to handle challenges from eMBB, MMTC and URLLC classes of application
- Propose architectural control and user functions to enable ICN formally in 5GC
 - Considering Network Slicing, NFV/SDN principles
- Using the non-IP PDU for native deployment of ICN in 5G and open issues related to using this feature
- Use case Scenarios
 - Smart Mobility
 - Multi-viewer VR
 - Seamless Mobility
 - Underlay for Control function

[1]Ravi Ravindran, Prakash Suthar et al, "Deploying ICN in 3GPP's 5G NextGen Core Architecture", IEEE, 5G World Forum, July, 2018

Draft Outline

1. Introdu	ction		2
2. Termino	logy		4
	Gen Core Design Principles		5
4. 5G Next	Gen Core Architecture		6
5. 5GC Arc	hitecture with ICN Support		8
	trol Plane Extensions		10
5.1.1.	Normative Interface Extensions		12
5.2. Use	r Plane Extensions		13
5.2.1.	Normative Interface Extensions		14
5.2.2.	ICN over non-IP PDU		15
6. 5G/ICN	Deployment Scenarios		16
	rt Mobility		16
	IP-MEC Scenario		17
6.1.2.	ICN-MEC Scenario		18
6.1.3.	IP-over-ICN MEC Scenario		18
	ti-viewer Virtual Reality		19
	Session Mobility		20
	ud-native (mobile) Operator Environments		22
	ion		22
	nsiderations		22
	y Considerations		23
			23
	edgments		23
Authors' Ad	tive References		25

Draft Updates

- New co-author Greg White
- Editorial corrections
- Section 5.2.2 : ICN over non-IP PDU
 - IPoC considerations towards non-IP PDU deployments
 - IPoC proposal follows from draft-white-icnrg-ipoc-01
 - In addition to native ICN applications, IP services can benefit from ICN too.
- Section 6: 5G/ICN Deployment Scenarios
 - ICN operation in Cloud-Native Operator Environment
 - Discusses a use case of ICN as an underlay to support control functions in 5G
 - This is in the context of IP-over-ICN architecture proposal based on IP-over-ICN architecture (Dirk Trossen et al.)

Next Steps

- A good document to capture ICN in 5GC enablement related work, flexible to adapt to other contributions related to:
 - Architecture
 - Routing, Mobility, Caching, Computing etc
 - Policy, Charging, Legal Intercepts, QoS etc.
 - Use case scenarios

- Would like to see the interest in the group to take it up as a RG item
 - Could make good case for ICN in Rel 16 and beyond.