Route Leaks Solution
Merger of RLP and eOTC Drafts

ietf-idr-route-leak-detection-mitigation-09

K. Sriram (Ed.), A. Azimov (Ed.), D. Montgomery, B. Dickson, K. Patel,
A. Robachevsky, E. Bogomazov, and R. Bush

IDR Working Group Meeting, IETF-102
July 2018

Acknowledgements: The authors are grateful to many folks in various IETF WGs for commenting, critiquing, and offering very helpful suggestions (see acknowledgements section in the draft.)
Draft Merger Efforts

• Authors from the two drafts met in Chicago (March 2017) and in London (March 2018)
• Support and encouragement from IDR Chairs John and Sue, and Ignas
• Productive authors’ meeting in London (IETF 101) followed by substantial discussions via email
• Authors happy to report on convergence to a merged solution and draft
Merged Solution and Design Discussion Drafts

• Merged Solution:

• Design Discussion:
Format of RLP Attribute
Optional Transitive Attribute

Design A
(original RLP)

<table>
<thead>
<tr>
<th>ASN: N</th>
<th>RLP: N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most Recently Added

<table>
<thead>
<tr>
<th>ASN: 2</th>
<th>RLP: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASN: 1</td>
<td>RLP: 1</td>
</tr>
</tbody>
</table>

Least Recently Added

UP: RLP = 0 DOWN/LATERAL: RLP = 1

Design B

<table>
<thead>
<tr>
<th>ASN: N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Most Recently Added

<table>
<thead>
<tr>
<th>ASN: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASN: 1</td>
</tr>
</tbody>
</table>

Least Recently Added

- eOTC: Design B with only one ASN in the attribute is the original eOTC
Comparison / Tradeoffs

<table>
<thead>
<tr>
<th></th>
<th>Design A (Original RLP)</th>
<th>Design B (Original eOTC)</th>
<th>Original eOTC (Design B with only one ASN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionality</td>
<td>Detect multiple leaks</td>
<td>Detect multiple leaks</td>
<td>Can’t detect multiple leaks</td>
</tr>
<tr>
<td></td>
<td>Provide up link info also</td>
<td>Only down/peer info</td>
<td>Lack of differentiation in some cases</td>
</tr>
<tr>
<td>Detection / mitigation strength</td>
<td>Best</td>
<td>Very good</td>
<td>See above</td>
</tr>
<tr>
<td>Memory use* (per update)</td>
<td>~ 136 bytes</td>
<td>~ 72 bytes</td>
<td>~ 32 bytes</td>
</tr>
</tbody>
</table>

* Assume average 4 hop AS path
Design B: Example

Two examples

Leak a peer route; or

Propagates a customer-learned route to avoid unreachability

AS7 sees a choice between update with one distant RLP violation vs. update with two closer RLP violations and one distant.
Alexander’s scenario:
Avoid Persistent Oscillation Possibility

Route 1: \(q \{P_0 X S\} \)

- Based on the route-leak detection theorem, violation of \([S] \) applies to Route 2 also.
- \([P_3] \) in Route 2 is expected (good).
- Given both routes are in violation of the same RLP, \(P_2 \) prefers the customer route.

Route 2: \(q \{P_3 P_1 P_0 X S\} \) \([P_3 S] \)

P1, P2 are aware of eOTC/RLP. P0, P3, P4 may or may not be.

RLP/eOTC

Decision Policy (Algorithm):
- Route 1 clearly violated \([S] \).
- Based on the route-leak detection theorem, violation of \([S] \) applies to Route 2 also.
- \([P_3] \) in Route 2 is expected (good).
- Given both routes are in violation of the same RLP, \(P_2 \) prefers the customer route.
(There is stable convergence.)
Examine Provider Route vis-à-vis Customer’s

• If customer route is a leak, and alternative route via provider includes the customer AS in the path, then prioritize customer route over the provider route.

* Stated simply here. See formal statement and explanation in the drafts.
Next Steps

• Request WG feedback on Design A vs. Design B

 ➢ How much utility for the additional information in the RLP attribute in Design A?
 o Indicating when update is sent to transit provider

• Request WG feedback on Attribute vs. Community

• Prepare a finalized version for WGLC
Backup slides
The only possible way that [X] is not violated in r2 is if the path from B to C consists of C2P links only. But that would violate the “No cycle of customer-provider relationships” requirement [Gao-Rexford].
Route-Leak Detection Theorem

The “Gao-Rexford” Stability Conditions

- Topology condition (acyclic)
 - No cycle of customer-provider relationships

Route-Leak Detection Theorem: Let it be given that ISP A receives a route r_1 from customer AS C and another route r_2 from provider AS B (for the same prefix), and both routes r_1 and r_2 contain AS C and AS X in the path and also contain [X] in their RLP/eOTC. Then, clearly r_1 is in violation of [X]. It follows that r_2 is also necessarily in violation of [X].

Proof: Let us suppose that r_2 is not in violation of [X]. That implies that r_2’s path from C to B to A included only P2C links. That would mean that there is a cycle of customer-provider relationships involving the ASes in the AS path in r_2. However, any such cycle is ruled out in practice as a necessary stability condition [Gao-Rexford]. QED.
Route-Leak Mitigation Rules

Rule 1: If ISP A receives a route r1 from customer AS C and another route r2 from provider (or peer) AS B (for the same prefix), and both routes r1 and r2 contain AS C and AS X (any X not equal to C) in the path and also contain [X] in their RLP, then prioritize the customer (AS C) route over the provider (or peer) route.

(Rationale: This rule is based on the theorem (slide 8). See detailed rationale in Section 3.1 in [1].)

Rule 2: If ISP A receives a route r1 from peer AS C and another route r2 from provider AS B (for the same prefix), and both routes r1 and r2 contain AS C and AS X (any X not equal to C) in the path and also contain [X] in their RLP, then prioritize the peer (AS C) route over the provider (AS B) route.

(Rationale: See illustration below. See detailed rationale in Section 3.1 in [1].)

Illustration of Rule 2

Default Route-Leak Mitigation Policy

• **Given a choice between a customer route versus a provider (or peer) route,**
 ▪ if no route leak is detected in the customer route, then prioritize the customer over the provider (or peer);
 ▪ else (i.e., when route leak is detected in the customer route) and the conditions of Rule 1 apply, then too prioritize the customer over the provider (or peer);
 ▪ else (i.e., when route leak is detected in the customer route and the conditions of Rule 1 DO NOT apply), then prioritize the provider (or peer) over the customer.

• **Given a choice between a peer route versus a provider route***,
 ▪ if no route leak is detected in the peer route, then prioritize the peer over the provider;
 ▪ else (i.e., when route leak is detected in the peer route) and the conditions of Rule 2 apply, then too prioritize the peer over the provider;
 ▪ else (i.e., when route leak is detected in the peer route and the conditions of Rule 2 DO NOT apply), then prioritize the provider over the peer.

Operator MAY override (the second bullet) to prefer provider route over peer route.
Examples Showing Policy in Action (1 of 2)

Legend:
- Green – not violation
- Red – violation
- Purple – can’t tell

Scenario 1
- Preferred route: q \{4 3 2 1\}
- AS does not participate in RLP and/or propagates a route that violates RLP

Scenario 2
- Preferred route: q \{5 3 2 1\}
- Rule 2 applied

Scenario 3
- Preferred route: q \{4 3 2 1\}
- (Rules 1 and 2 not applicable)
Scenario 4

Legend:

- **n**: AS does not participate in RLP and/or Propagates a route that violates RLP

- **Green**: not violation
- **Red**: violation
- **Purple**: can’t tell

Preferred route:

q \{4 3 2 1\}

(Rules 1 and 2 not applicable)
Design A – RLP Attribute

- Insert <ASN, 1> if sending to Customer or Peer
- else, insert <ASN, 0>

AS1

P1 originated by AS1

AS2

RLP = <AS1, 1>

AS3

AS3 detects leak; prefers alternate path

RLP = <AS4, 1> <AS1, 1>

AS4

P

RLP = <AS1, 1>

p2p

C2P

AS2 leaks it

C2P

C2P

Route Leak

Detected/
Mitigated 😊
Design B – RLP Attribute

- Insert <ASN> if sending to Customer or Peer
- Else, insert nothing

- **P1 originated by AS1**
- **AS2 leaks it**
- **AS2 leaks it**
- **AS3 detects leak; prefers alternate path**
- **RLP = <AS1>**
- **RLP = <AS1>**
- **RLP = <AS4> <AS1>**
- **Route Leak Detected/Mitigated 😊**

![Diagram showing the routes and leak detection process](image-url)