An Overview of Multiple Access Management Services (MAMS)

Satish Kanugovi (<u>satish.k@nokia.com</u>), Hannu Flinck (<u>hannu.flinck@nokia.com</u>), Nurit Sprecher (<u>nurit.specher@nokia.com</u>)

On behalf of co-Authors: Nokia, Broadcom, Intel, Huawei, AT&T, KT

Multi Access Management Services - MAMS

- Multi Access Management Services (MAMS) is a framework for configuring and selecting protocols for multi-access use cases.
- On individual submissions track in IETF (<u>https://www.ietf.org/id/draft-kanugovi-intarea-mams-framework-01.txt</u>)
 - Co-authors from operators and network vendors (Nokia, Intel, Broadcom, Huawei, AT&T, KT).
 - Currently under ISE review.
- MAMS Control Plane protocol
 - MAMS control protocol is application level protocol (JSON encoded over WebSocket).
 - User plane agnostic: selects user plane protocols (e.g. MPTCP, UDP, GRE, etc.) based on service and traffic types.
 - Discovers and selects network side proxies, e.g. off-path or on-path proxies.
 - Configures network paths independently for uplink and downlink using common IETF protocols for multiaccess.
 - Adopts dynamically to network conditions using path measurements and analytics.

MAMS in other Standards/Industry forums

- 3GPP ATSSS (Study on Access Traffic Steering, Switching and splitting support in the 5G system architecture)
 - MAMS protocol architecture and flexible user plane configuration are considered in development of TR 23.793 "Solution 1" and Measurement control via user plane.
- Wireless Broadband Alliance (WBA)
 - Part of technology discussions in "Unlicensed Integration with 5G Networks" workgroup and included in the outcome Whitepaper (WiP)
- Small Cell Forum (SCF)
 - Part of work item discussions on "LTE/5G & WiFi Integration Update"
- ETSI Multi Access Edge Computing (MEC)
 - MEC Ph2 multi access requirements includes MAMS use cases (MEC-0021 UC Optimizing QoE and resource utilization in Multi-access networks)
- WiFi Alliance (WFA)
 - MAMS Included in technical proposal on hooks for WiFi/Cellular integration for proxy discovery, link metrics and flexible selection of transport protocols

MAMS Framework

Network Connection Manager (NCM)

 Selects and configures proxies, network paths and user plane protocols based on client negotiation.

Client Connection Manager (CCM)

 Negotiates client's capabilities and needs with the NCM and configures network path usage.

N-MADP network side proxies

 User plane distribution and aggregation across configured network paths.

C-MADP client side user plane functions

• Supports any user plane protocols e.g. TCP, UDP, MPTCP, SCTP, GRE, ...

MAMS Control and User Plane Protocols

- Control Plane
 - Messages carried over WebSocket/TLS agnostic to underlying transport network
 - Configures user plane protocols per application needs and client and network capabilities
 - Supports dynamic adaptation of network paths and user plane protocol selection triggered by changing network conditions
- User Plane
 - Provides services like traffic aggregation and distribution
 - Can be use existing protocols like MPTCP, GRE Proxy
 - Or new user plane protocols (e.g. Trailer Adaptation)
 - Divided into:
 - MX Convergence Sublayer: Aggregation and Distribution
 - MX Adaptation Sublayer (optional): access and transport specific aspects of a single path (e.g. NAT, User plane security)

User Payloa	d (e.g. IP PDU)
Multi Access (MX) Convergence Sublayer
MX Adaptation Sublayer (optional)	MX Adaptation MX Adaptation Sublayer Sublayer (optional) (optional)
Access #1 IP	Access #2 IP Access #3 IP
	MAMS User Plane Protocol Stac

MAMS User Plane Protocol

Use cases benefitting from MAMS

- LTE/Wi-Fi integration for enterprises, public venues and stadiums.
- Introduction of local (e.g. hotspot, small cells) 5G deployments and co-operation with the rest of existing infrastructure.
- Improved use of existing fixed line assets, unified platform for managing utilization and joint traffic steering across multiple networks.

Thanks, Feedback Welcome

Back up slides

Background

- Application QoE (quality of experience) varies with choice of network paths
 - Performance varies dynamically based on network conditions, e.g. radio conditions, user population, actual network utilization
 - e.g. 1, Wi-Fi offers good capacity with small number of users which quickly degrades, low throughputs and large unpredictable delays due to uplink contention with larger user population.
 - e.g. 2, LTE capacity is limited by available licensed spectrum but offers predictable performance even with increasing number of users
- Deployment configurations determine certain network path choices for applications
 - e.g. Enterprise apps available only via Wi-Fi IP gateway, Cellular operator hosted Cloud only available via cellular IP gateway, IPsec/VPNs
- Different traffic types require different user plane treatment
 - e.g. MPTCP based aggregation of link capacity for TCP based video flows, Encapsulating Trailer/Header (e.g. GRE) based reordering support for UDP traffic over multiple links
- Selecting best combination of network paths and user plane treatment is essential for consistent and high QoE
 - Dynamically adapt to changing network conditions
 - e.g. Improve enterprise conferencing service (e.g. Skype) by choosing Wi-Fi access in uncongested conditions, Switch only uplink to LTE access as Wi-Fi radio link condition degrades or congestion increases

Limitations of current IETF multi-access approaches

• MPTCP

- MPTCP Proxy Discovery and Selection missing
- Identification and configuration of application flows for MPTCP usage (not all flows need MPTCP)
- Improve performance using out of band path probing and radio link measurements to control
- Trigger/Defer creation and Proactive deletion of subflows
- MPTCP scheduler / load balancer configuration (e.g. using enhanced Socket APIs work in IETF)
- Multiple Provisioning Domain Architecture (RFC 7556)
 - PvDs are used to enable separation and configuration consistency for multiple concurrent connections but only at time of IP stack configuration.
 - PvD information is conveyed by DHCPv6, RAs or IKEv2 and assumes IPv6.
 - For interface selection assumes separate host policies that MAMS can provide.

Limitations of current IETF multi-access approaches (cont.)

- IKEv2 Mobility and Multihoming Protocol, MOBIKE (4555)
 - Allows the IP addresses associated with IKEv2 and tunnel mode IPsec Security Associations to change.
 - Is currently limited to tunnel mode, but3GPP needs also transport mode.
 - Load balancing between multiple interfaces is beyond the scope of MOBIKE specification.
 - Does not work over address pairs that provide only unidirectional connectivity.