An Overview of Multiple Access Management Services (MAMS)

Satish Kanugovi (satish.k@nokia.com), Hannu Flinck (hannu.flinck@nokia.com), Nurit Sprecher (nurit.specher@nokia.com)

On behalf of co-Authors: Nokia, Broadcom, Intel, Huawei, AT&T, KT
Multi Access Management Services - MAMS

- Multi Access Management Services (MAMS) is a framework for configuring and selecting protocols for multi-access use cases.

 - Co-authors from operators and network vendors (Nokia, Intel, Broadcom, Huawei, AT&T, KT).
 - Currently under ISE review.

- MAMS Control Plane protocol
 - MAMS control protocol is application level protocol (JSON encoded over WebSocket).
 - User plane agnostic: selects user plane protocols (e.g. MPTCP, UDP, GRE, etc.) based on service and traffic types.
 - Discovers and selects network side proxies, e.g. off-path or on-path proxies.
 - Configures network paths independently for uplink and downlink using common IETF protocols for multi-access.
 - Adopts dynamically to network conditions using path measurements and analytics.
MAMS in other Standards/Industry forums

• 3GPP ATSSS (Study on Access Traffic Steering, Switching and splitting support in the 5G system architecture)
 • MAMS protocol architecture and flexible user plane configuration are considered in development of TR 23.793 – “Solution 1” and Measurement control via user plane.

• Wireless Broadband Alliance (WBA)
 • Part of technology discussions in “Unlicensed Integration with 5G Networks” workgroup and included in the outcome Whitepaper (WiP)

• Small Cell Forum (SCF)
 • Part of work item discussions on “LTE/5G & WiFi Integration Update”

• ETSI Multi Access Edge Computing (MEC)
 • MEC Ph2 multi access requirements includes MAMS use cases (MEC-0021 – UC - Optimizing QoE and resource utilization in Multi-access networks)

• WiFi Alliance (WFA)
 • MAMS Included in technical proposal on hooks for WiFi/Cellular integration for proxy discovery, link metrics and flexible selection of transport protocols
MAMS Framework

Network Connection Manager (NCM)
- Selects and configures proxies, network paths and user plane protocols based on client negotiation.

Client Connection Manager (CCM)
- Negotiates client’s capabilities and needs with the NCM and configures network path usage.

N-MADP network side proxies
- User plane distribution and aggregation across configured network paths.

C-MADP client side user plane functions
- Supports any user plane protocols e.g. TCP, UDP, MPTCP, SCTP, GRE, ...
MAMS Control and User Plane Protocols

• Control Plane
 • Messages carried over WebSocket/TLS agnostic to underlying transport network
 • Configures user plane protocols per application needs and client and network capabilities
 • Supports dynamic adaptation of network paths and user plane protocol selection triggered by changing network conditions

• User Plane
 • Provides services like traffic aggregation and distribution
 • Can be use existing protocols like MPTCP, GRE Proxy
 • Or new user plane protocols (e.g. Trailer Adaptation)
 • Divided into:
 • MX Convergence Sublayer: Aggregation and Distribution
 • MX Adaptation Sublayer (optional): access and transport specific aspects of a single path (e.g. NAT, User plane security)
Use cases benefitting from MAMS

• LTE/Wi-Fi integration for enterprises, public venues and stadiums.

• Introduction of local (e.g. hotspot, small cells) 5G deployments and co-operation with the rest of existing infrastructure.

• Improved use of existing fixed line assets, unified platform for managing utilization and joint traffic steering across multiple networks.
Thanks, Feedback Welcome
Back up slides
Background

• Application QoE (quality of experience) varies with choice of network paths
 • Performance varies dynamically based on network conditions, e.g. radio conditions, user population, actual network utilization
 • e.g. 1, Wi-Fi offers good capacity with small number of users which quickly degrades, low throughputs and large unpredictable delays due to uplink contention with larger user population.
 • e.g. 2, LTE capacity is limited by available licensed spectrum but offers predictable performance even with increasing number of users

• Deployment configurations determine certain network path choices for applications
 • e.g. Enterprise apps available only via Wi-Fi IP gateway, Cellular operator hosted Cloud only available via cellular IP gateway, IPsec/VPNs

• Different traffic types require different user plane treatment
 • e.g. MPTCP based aggregation of link capacity for TCP based video flows, Encapsulating Trailer/Header (e.g. GRE) based reordering support for UDP traffic over multiple links

• Selecting best combination of network paths and user plane treatment is essential for consistent and high QoE
 • Dynamically adapt to changing network conditions
 • e.g. Improve enterprise conferencing service (e.g. Skype) by choosing Wi-Fi access in uncongested conditions, Switch only uplink to LTE access as Wi-Fi radio link condition degrades or congestion increases
Limitations of current IETF multi-access approaches

- MPTCP
 - MPTCP Proxy Discovery and Selection missing
 - Identification and configuration of application flows for MPTCP usage (not all flows need MPTCP)
 - Improve performance using out of band path probing and radio link measurements to control
 - Trigger/Defer creation and Proactive deletion of subflows
 - MPTCP scheduler / load balancer configuration (e.g. using enhanced Socket APIs work in IETF)

- Multiple Provisioning Domain Architecture (RFC 7556)
 - PvDs are used to enable separation and configuration consistency for multiple concurrent connections but only at time of IP stack configuration.
 - PvD information is conveyed by DHCPv6, RAs or IKEv2 and assumes IPv6.
 - For interface selection assumes separate host policies that MAMS can provide.
Limitations of current IETF multi-access approaches (cont.)

• IKEv2 Mobility and Multihoming Protocol, MOBIKE (4555)
 • Allows the IP addresses associated with IKEv2 and tunnel mode IPsec Security Associations to change.
 • Is currently limited to tunnel mode, but 3GPP needs also transport mode.
 • Load balancing between multiple interfaces is beyond the scope of MOBIKE specification.
 • Does not work over address pairs that provide only unidirectional connectivity.