
SOCKS Protocol Version 6
(update)

draft-olteanu-intarea-socks-6-03
Vladimir Olteanu

Dragoș Niculescu

University Politehnica of Bucharest



Changes in -03

• Mostly based on implementation experience

• More freedom w.r.t. which parts to support

• Timeliness for Token Window Advertisements

• Removed Salt options (AEAD mandatory in TLS 1.3)

• Renamed: Socket options => Stack options



Making options optional

• Philosophy: Unsupported options can be safely ignored

• Removed inter-dependencies and functionality overlap

• Just need v4 functionality?
• Don’t support anything

• Need authentication?
• Classic (as in v5): Auth. Method Options

• 0-RTT: Auth. Data Options (enough for username + password)

• Avoid issues with TFO and/or TLS Early Data?
• Idempotence options + some kind of authentication

• TFO? MPTCP proxy bypass? You get the idea…



TFO on the client-proxy leg

• TFO payload can be replayed under rare 
circumstances

• Clients SHOULD NOT use TFO on the client-proxy 
leg unless:
• Application protocol tolerates TFO

• No application data in SYN payload

• SOCKS over TLS without Early Data

• Using Idempotence Options



Idempotence options: refresher

Client Proxy

Request + [Spend = 1]

Auth. Reply

Operation reply +
[Token OK] +

[Window = (2-101)]

Window =
(1-100)

(revision -02)

Window =
(2-101)



Idempotence options: refresher

Client Proxy

[Spend = 1]

[Spend = 2]

[Window = (1-100)]

• Reordering is tolerated

[Window = (3-102)]

Client Proxy

[Spend = 1]

[Token OK]

[Spend = 1]

[Token Rejected]

• Duplicates are rejected



Idempotence options: timeliness

• Window Advertisements moved from Op. Reply to Auth. Reply

Client Proxy

Request + [Spend = 1]

Auth. Reply

Operation reply +
[Token OK] +

[Window = (2-101)]

Window =
(1-100)

(revision -02)

Client Proxy

Request + [Spend = 1]

Auth. Reply +
[Window = (2-101)]

Operation reply +
[Token OK]

Client
Proxy
RTT

(revision -03)

Client
Proxy
RTT

Proxy 
Server 
RTTProxy 

Server 
RTT

Window =
(2-101)

Window =
(2-101)



Idempotence options: tracking 
used tokens
• Constant memory 

usage per user
• Proxy only tracks tokens

in window

• Bitmap + few integers

• Use a high water mark
to handle dropped 
requests
• Not in draft

Client Proxy

[Spend = 1]

[Spend = 2]

Window =
(1-100)
Hi Wat. =
75

(1-100)

[Spend = 3]
(1-100)

.

.

.

[Spend = 74]

[Spend = 75]

[Spend = 76]

(1-100)

(1-100)

(2-101)

(77-176)

X

X



Idempotence options: 
functionality downgrade
Client Proxy

[Spend = 1]

[Token OK]

[Spend = 1]

[Token Rejected,
Duplicate/Not in window]



Idempotence options: 
functionality downgrade

• Restarting the proxy 
with support for 
idempotence is ok
• Mandatory under -02. 

But what about options 
being optional?

Client Proxy

[Spend = 1]

[Token OK]

[Spend = 1]

[Token Rejected,
No Window]

RESTART



Idempotence options: 
functionality downgrade

• Restarting the proxy 
with support for 
idempotence is ok
• Mandatory under -02. 

But what about options 
being optional?

• Restarting the proxy 
without support for 
idempotence can be 
problematic
• Possible under -03

Client Proxy

[Spend = 1]

[Token OK]

[Spend = 1]

[Option ignored]
Operation performed again

RESTART
NO IDEMPOTENCE



Idempotence options: 
functionality downgrade
• Prevent replays, rather than ensuring idempotence

• Solution depends on use case

• TFO: Disable TFO for 1 MSL prior to the downgrade

• TLS Early Data: Kill TLS sessions



Message library API example

Creating a Request
uint8_t buf[1500];

struct S6M_Request req = {
.code = SOCKS6_REQUEST_CONNECT,
.addr = {

.type = SOCKS6_ADDR_DOMAIN,

.domain = "somesite.org",
},
.port = 80,
.optionSet = {

.tfo = 1,
},

};

ssize_t size = S6M_Request_pack(&req, buf, 1500);
if (size < 0) {

/* error */
}

/* send the request */

Parsing a Request
uint8_t buf[1500];

/* receive the request */

struct S6M_Request *req;

ssize_t size = S6M_Request_parse(buf, 1500, &req);
if (size < 0) {

/* error */
}

/* do something with the request */

S6M_Request_free(req);

• Fully-featured message library (C++ with C bindings)



Implementation

• Message library (feature-complete): 
https://github.com/45G/libsocks6util

• Utility library: https://github.com/45G/libsocks6util

• Basic prototype based on Shadowsocks: 
https://github.com/45G/shadowsocks-libev

• Full-blown implementation in the works: 
https://github.com/vlolteanu/sixtysocks

https://github.com/45G/libsocks6util
https://github.com/45G/libsocks6util
https://github.com/45G/shadowsocks-libev
https://github.com/vlolteanu/sixtysocks

