Auxiliary Exchange Authentication

draft-smyslov-ipsecme-ikev2-aux

Valery Smyslov
svan@elvis.ru

IETF 102
Auxiliary Exchange (IKE_AUX) takes place between IKE_SA_INIT and IKE_AUTH:

Initiator

IKE_SA_INIT
HDR (MID=0), SAI1, KEi, Ni, N(AUX_EXCHANGE_SUPPORTED)

IKE_AUX
HDR (MID=1), SK{...}

IKE_AUTH
HDR (MID=2), SK{IDi, AUTH, SAI2, TSi, TSr}

Responder

IKE_SA_INIT
 HDR (MID=0), SAr1, KEr, Nr
 N(AUX_EXCHANGE_SUPPORTED)

IKE_AUX
 HDR (MID=1), SK{...}

IKE_AUTH
 HDR (MID=2), SK{AUTH, SAr2, TSi, TSr}
Auxiliary Exchange Authentication

• Currently draft defines that IKE_AUX messages are authenticated by including their ICVs in the signature calculation in IKE_AUTH:

 \[
 \begin{align*}
 \text{InitiatorSignedOctets} &= \text{RealMessage1} \mid \text{AUX}_I \mid \text{NonceRData} \mid \text{MACedIDForI} \\
 \text{AUX}_I &= \text{ICV}_I_1 [\mid \text{ICV}_I_2 [\mid \text{ICV}_I_3 \ldots]] \\
 \text{ResponderSignedOctets} &= \text{RealMessage2} \mid \text{AUX}_R \mid \text{NonceIData} \mid \text{MACedIDForR} \\
 \text{AUX}_R &= \text{ICV}_R_1 [\mid \text{ICV}_R_2 [\mid \text{ICV}_R_3 \ldots]]
 \end{align*}
 \]

 (where \text{ICV}_{[I|R]_{[N]}} are Integrity Check Values from the corresponding IKE_AUX messages)

• Identified problems (Scott Fluhrer, Daniel Van Geest):

 - (minor) Not all AEAD algorithms produce separate ICV, some may spread authentication information over the ciphertext
 • all AEAD algorithms currently defined for IPsec (CCM, GCM, Chacha20-Poly1305) produce separate ICV

 - (major) Some widely used AEAD algorithms (e.g. GCM) are not second preimage resistant when an attacker knows the key
Attack Description

• Attacker in the middle equipped with Quantum Computer capable to break DH exchange in IKE_SA_INIT in real time (which is presumably not quantum-safe) can learn the keys used to protect subsequent IKE_AUX messages (SK_e*/SK_a*)
• If negotiated AEAD algorithm is not resistant to second preimage attack with known key, then the attacker can change content of these messages so that peers would not notice this fact
• If these IKE_AUX messages contain public values for Quantum Safe Key Exchange methods, the attacker can substitute them with her own
• If the attacker manages to substitute QSKE public values in such a way, that the peers compute the same SKEYSEED (which she knows), then IKE_AUTH will succeeded and the attacker will mount a successful MitM attack
Possible Solution (1)

- Include whole IKE_AUX messages into the signature calculation in IKE_AUTH:

 \[\text{InitiatorSignedOctets = RealMessage1} \mid \text{AUX}_I \mid \text{NonceRData} \mid \text{MACedIDForI}\]
 \[\text{AUX}_I = \text{MSG}_I_1 \mid \text{MSG}_I_2 \mid \text{MSG}_I_3 \ldots\]\n \[\text{ResponderSignedOctets = RealMessage2} \mid \text{AUX}_R \mid \text{NonceIData} \mid \text{MACedIDForR}\]
 \[\text{AUX}_R = \text{MSG}_R_1 \mid \text{MSG}_R_2 \mid \text{MSG}_R_3 \ldots\]\n
 (where \text{MSG}_\{I|R\}_\{N\} are corresponding IKE_AUX messages)

- Properties:
 - completely thwarts the attack
 - peers need to keep IKE_AUX messages until IKE_AUTH completes, which opens possibility for DoS attack, since these messages could be large
Possible Solution (2)

• Include hashes of IKE_AUX messages into the signature calculation in IKE_AUTH:

InitiatorSignedOctets = RealMessage1 | AUX_I | NonceRData | MACedIDForI
AUX_I = H(MSG_I_1) [| H(MSG_I_2) [| H(MSG_I_3) ...]]
ResponderSignedOctets = RealMessage2 | AUX_R | NonceIData | MACedIDForR
AUX_R = H(MSG_R_1) [| H(MSG_R_2) [| H(MSG_R_3) ...]]

(where \(H(MSG_{[I|R]_[N]} \)) are hashes of corresponding IKE_AUX messages calculated using collision-resistant hash function)

• Properties:
 – completely thwarts the attack
 – IKEv2 doesn’t negotiate hash function primitive, so new IANA registry would be needed as well as new negotiation mechanism (or new Transform Type)
 • increases both protocol complexity and size of IKE_SA_INIT messages
Possible Solution (3)

- Similar to solution (2), but uses negotiated PRF with all zero key instead of hash function:

 InitiatorSignedOctets = RealMessage1 | AUX_I | NonceRData | MACedIDForI
 AUX_I = PRF(0,MSG_I_1) [| PRF(0,MSG_I_2) [| PRF(0,MSG_I_3) ...]]
 ResponderSignedOctets = RealMessage2 | AUX_R | NonceIData | MACedIDForR
 AUX_R = PRF(0,MSG_R_1) [| PRF(0,MSG_R_2) [| PRF(0,MSG_R_3) ...]]

 (where PRF(0,MSG_[I|R]_[N]) are results of applying PRF with all zero key to corresponding IKE_AUX messages)

- Properties:
 - thwarts the attack if negotiated PRF is resistant to second preimage attack with known key; among the currently defined PRFS for IKEv2:
 - all HMAC-based PRFs are resistant
 - PRF_AES128_XCBC and PRF_AES128_CMAC are not
 - these PRFs are not quantum-resistant anyway since they use 128-bit key
Way Forward

• After some discussion on the list the proposed solution (3) looks like best possible compromise
• Any other ideas?
• Comments? Questions?

Thank you!