
IETF 102, Montreal
July 16, 2018

Jaehoon (Paul) Jeong [Editor], Nabil Benamar, Sandra Cespedes, Jerome Haerri, Dapeng Liu, Tae (Tom) Oh, Charles E. Perkins, Alexandre Petrescu, Yiwen (Chris) Shen, and Michelle Wetterwald
Update from -02 and -03 Versions

• This document (-04) is updated from
 – draft-ietf-ipwave-vehicular-networking-02
 – draft-ietf-ipwave-vehicular-networking-03

• Major Updates
 – Reorganization of Table of Contents (TOC) for problem statement and use cases in IPWAVE:
 • The request from AD (Suresh Krishnan) and IPWAVE Chairs.
 • TOC was from consensus in IETF-102 Meeting.
 – Key Work Items for IPWAVE Problem Statement
 • Neighbor Discovery
 • Mobility Management
 • Security and Privacy
1. Introduction
2. Terminology
3. Use Cases
 3.1. V2V
 3.2. V2I
 3.3. V2X
 4.1.1. IPv6 over 802.11-OCB
 4.1.2. IP Address Autoconfiguration
 4.1.3. Routing
 4.1.4. Mobility Management
 4.1.5. DNS Naming Service
 4.1.6. Service Discovery
 4.1.7. Security and Privacy
 4.2. General Problems
 4.2.1. Vehicular Network Architecture
 4.2.2. Latency
 4.2.3. Security
 4.2.4. Pseudonym Handling

5. Problem Exploration
 5.1. Neighbor Discovery
 5.1.1. Link Model
 5.1.2. MAC Address Pseudonym
 5.1.3. Prefix Dissemination/Exchange
 5.1.4. Routing
 5.2. Mobility Management
 5.3. Security and Privacy
6. Security Considerations
7. Informative References

Appendix A. Relevant Work Items for IPWAVE
 A.1. Vehicle Identity Management
 A.2. Multihop V2X
 A.3. Multicast
 A.4. DNS Naming Services and Service Discovery
 A.5. IPv6 over Cellular Networks
 A.5.1. Cellular V2X (C-V2X) Using 4G-LTE
 A.5.2. Cellular V2X (C-V2X) Using 5G
Use Cases (1/3)

- **V2V**

 Collision Avoidance

 ![Collision Avoidance Diagram](image1)

 Cooperative adaptive cruise control

 ![Cooperative Adaptive Cruise Control Diagram](image2)

 Cooperative environment sensing

 ![Cooperative Environment Sensing Diagram](image3)

 Platooning

 ![Platooning Diagram](image4)

 Source: Daimler Trucks North America LLC.
Use Cases (2/3)

- V2I

Navigation service

Traffic Control Center (TCC) for Vehicular Cloud

Energy-efficient speed recommendation

The car at the front only saved 2 minutes.

Accident notification service
Use Cases (3/3)

- **V2X**
 - **Pedestrian protection service**
Analysis for Current Protocols (1/2)

• The Survey of Current Protocols
 – Survey is from IP-based vehicular networking research.
 – Protocols of each subject were summarized.

• Current Protocols for Vehicular Networking
 – IPv6 over 802.11-OCB
 – IP Address Autoconfiguration
 – Routing
 – Mobility Management
 – DNS Naming Service
 – Service Discovery
 – Security and Privacy
Analysis for Current Protocols (2/2)

- **General Problems**
 - Vehicular Network Architecture
 - Latency
 - Security
 - Pseudonym Handling
General Problems: Vehicular Network Architecture (1/3)

Figure 1: A Vehicular Network Architecture for V2I and V2V Networking

Vehicle V_1 V2V Vehicle V_2 V2V Vehicle V_3 V2V
General Problems: Vehicular Network Architecture (2/3)

Figure 2: **Internetworking** between Vehicle Network and RSU Network
Figure 3: **Internetworking between Two Vehicle Networks**

Vehicle₁ (Moving Network₁) --- Vehicle₂ (Moving Network₂)
Problem Exploration

• **Key Work Items in IPWAVE**
 – Neighbor Discovery
 – Mobility Management
 – Security and Privacy

• **Relevant Work Items to IPWAVE**
 – Vehicle Identity Management
 – Multihop V2X
 – Multicast
 – DNS Naming Services and Service Discovery
 – IPv6 over Cellular Networks
Neighbor Discovery (ND) (1/3)

• IPv6 ND needs to be tailored for vehicular networking (V2V, V2I, and V2X) having
 – dynamically change topology,
 – multihop forwarding, and
 – high-speed vehicles.

• ND Parameter Adjustment is required:
 – Router lifetime, and
 – Neighbor Advertisement (NA) interval
Neighbor Discovery (ND) (2/3)

• Link Model
 – IPv6 protocols have an invalid link model in WAVE:
 • The IPv6 link model’s assumption for symmetry in connectivity between neighboring interfaces.
 • The existence of unidirectional links due to interference and different Tx power levels.
 • Unreachability between two nodes with the same prefix due to node mobility and highly dynamic topology in VANET.
 – IPv6 ND should be extended to support the concept of a WAVE link in terms of multicast in VANET.
Neighbor Discovery (ND) (3/3)

• **MAC Address Pseudonym**
 – MAC address change should consider the maintenance of end-to-end transport-layer session according to IPv6 address change.

• **Prefix Dissemination/Exchange**
 – The communication of two nodes within different internal networks (i.e., vehicle and RSU) requires an ND extension or routing for efficient prefix dissemination/exchange.
Mobility Management

• **Efficient mobility management** is required for
 – seamless connectivity and timely data exchange between two end points.

• **GPS navigator-based trajectory** can be used for **proactive mobility management**:
 – A vehicle’s mobility information (e.g., position, speed, direction, and trajectory) is periodically reported to a Traffic Control Center (TCC).
 – With prediction of vehicle mobility, TCC supports RSUs to perform **DAD**, data packet forwarding, and **handover** in a proactive manner.
Security and Privacy (1/2)

• **Authorized Communication**
 – Only authorized nodes (e.g., vehicles, in-vehicle devices, and mobile devices) should be allowed to use vehicular networking (V2V, V2I, and V2X).

• **Authentication of Vehicle and User**
 – VIN and user certificate with in-vehicle device’s ID generation can be used for the authentication of a vehicle or a user.
 – This authentication can be performed by an RSU connected to an authentication server in TCC.
Security and Privacy (2/2)

- **Secure V2I/V2X Communication**
 - A secure channel between a vehicle’s mobile router and an RSU’s fixed router needs to be used for secure V2I communication.
 - A secure channel between a vehicle’s mobile router and another vehicle’s mobile router needs to be used for secure V2V communication.
 - Transport Layer Security (TLS) certificates can be used for secure end-to-end communications.

- **Privacy**
 - MAC address pseudonym can prevent an adversary from tracking a vehicle or user.
 - Such a pseudonym needs to consider the continuity of an end-to-end session.
Next Steps

• **WG Last Call**
 – During WGLC, we will collect feedback from IPWAVE WG and reflect it on the revisions.

• **IESG Submission**
 – We aim at submitting the document to the IESG before IETF-103 meeting.
APPENDIX:
RELEVANT WORK ITEMS TO IPWAVE
Vehicle Identity Management

• A vehicle can have multiple network interfaces for different access network technologies (e.g., DSRC, and 4G-LTE).
 – This means multiple identities of a vehicle.

• In this situation, a Vehicle Identification Number (VIN) can be used for a globally unique vehicle identifier.

• To support seamless connectivity over multiple identities,
 – A cross-layer network architecture is required with vertical handover functionality.
Multihop V2X

• Multihop packet forwarding among vehicles in 802.11-OCB mode shows an unfavorable performance due to the common known broadcast-storm problem.
 – Improvements in Layer-2 are
 • Probability-based methods,
 • Clustering-based methods, and
 • RSU-assisted methods.
Multicast

• IP multicast in vehicular network environments is especially useful for various services:
 – Multicast service notifications to a particular group/class/type of vehicles, and
 – Disseminate alert messages in a particular area.

• Some performance issues about multicast are found in [Multicast-802]
 – Neighbor Discovery and Service Discovery may fail.
 – DAD process may fail.
 – Router Advertisement (RA) messages can be lost.
DNS Naming Services and Service Discovery

• **DNS name-based communication** between IPv6 nodes (e.g., in-vehicle devices) requires **DNS name resolution**.
 – For this resolution, **Recursive DNS Servers** (RDNSSses) should be advertised to them.

• **Service discovery** is required for an in-vehicle device to **search for an application** (or server).
 – It resides in another internal network within another vehicle or an RSU.
 – **DNS-SD** and **Vehicular ND** can be used.
IPv6 over Cellular Networks (1/2)

- 3GPP-Release 14 (3GPP-R14) announced V2X services support;
 - Using the modified sidelink interface is previously designed for LTE Device-to-Device (LTE-D2D).
 - Only 3GPP-R14 supports IPv6 implementation.

- [TS-23.285-3GPP] instructs that a UE autoconfigures a link-local IPv6 address by following [RFC4862];
 - It does not sends Neighbor Solicitation and Neighbor Advertisement messages for DAD.
IPv6 over Cellular Networks (2/2)

- [TR-22.886-3GPP] is studying new use cases for V2X using 5G new radio in the future:
 - Platooning
 - Sensor and state map sharing
 - Remote driving
 - Automated cooperative driving
 - Dynamic ride sharing
 - Emergency trajectory alignment
 - Software update for ECU
 - etc.