

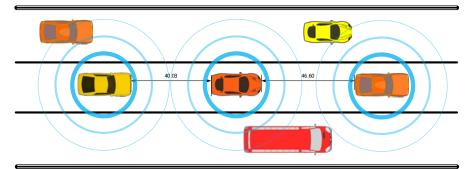
IP Wireless Access in Vehicular Environments (IPWAVE): Problem Statement and Use Cases (draft-ietf-ipwave-vehicular-networking-04)

IETF 102, Montreal July 16, 2018

Jaehoon (Paul) Jeong [Editor], Nabil Benamar, Sandra Cespedes, Jerome Haerri, Dapeng Liu, Tae (Tom) Oh, Charles E. Perkins, Alexandre Petrescu, Yiwen (Chris) Shen, and Michelle Wetterwald

Update from -02 and -03 Versions

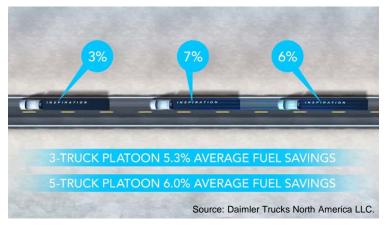
- This document (-04) is updated from
 - draft-ietf-ipwave-vehicular-networking-02
 - draft-ietf-ipwave-vehicular-networking-03
- Major Updates
 - Reorganization of Table of Contents (TOC) for problem statement and use cases in IPWAVE:
 - The request from AD (Suresh Krishnan) and IPWAVE Chairs.
 - TOC was from consensus in IETF-102 Meeting.
 - Key Work Items for IPWAVE Problem Statement
 - Neighbor Discovery
 - Mobility Management
 - Security and Privacy

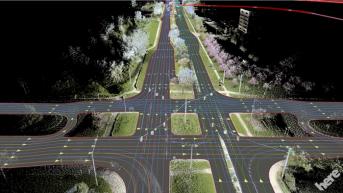

Table of Contents

1. Introduction	5. Problem Exploration
2. Terminology	5.1. Neighbor Discovery
3. Use Cases	5.1.1. Link Model
3.1. V2V	5.1.2. MAC Address Pseudonym
3.2. V2I	5.1.3. Prefix Dissemination/Exchange
3.3. V2X	5.1.4. Routing
4. Analysis for Current Protocols	5.2. Mobility Management
4.1. Current Protocols for Vehicular	5.3. Security and Privacy
Networking	6. Security Considerations
4.1.1. IPv6 over 802.11-OCB	7. Informative References
4.1.2. IP Address Autoconfiguration	
4.1.3. Routing	Appendix A. Relevant Work Items for
4.1.4. Mobility Management	IPWAVE
4.1.5. DNS Naming Service	A.1. Vehicle Identity Management
4.1.6. Service Discovery	A.2. Multihop V2X
4.1.7. Security and Privacy	A.3. Multicast
4.2. General Problems	A.4. DNS Naming Services and Service
4.2.1. Vehicular Network Architecture	Discovery
4.2.2. Latency	A.5. IPv6 over Cellular Networks
4.2.3. Security	A.5.1. Cellular V2X (C-V2X) Using 4G-LTE
4.2.4. Pseudonym Handling	A.5.2. Cellular V2X (C-V2X) Using 5G

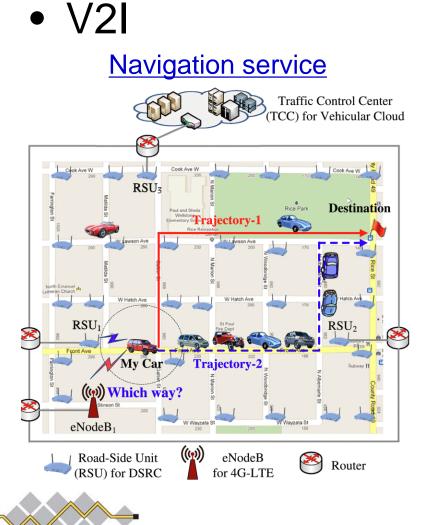
Use Cases (1/3)

Collision Avoidance


Cooperative adaptive cruise control



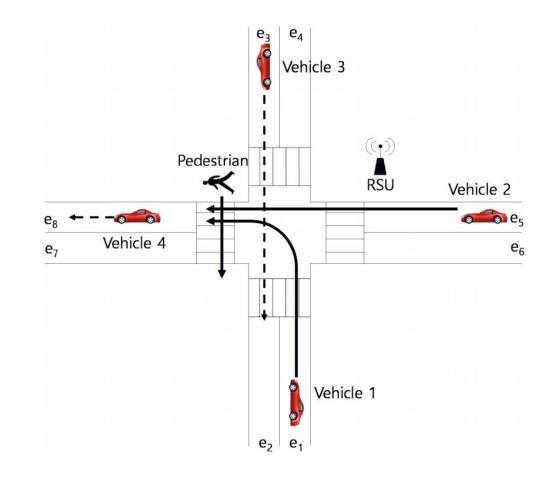
V2V


<u>Platooning</u>

Cooperative environment sensing

Use Cases (2/3)

Energy-efficient speed recommendation


Accident notification service

Use Cases (3/3)

• V2X

- Pedestrian protection service

Analysis for Current Protocols (1/2)

- The Survey of Current Protocols
 - Survey is from IP-based vehicular networking research.
 - Protocols of each subject were summarized.

Current Protocols for Vehicular Networking

- IPv6 over 802.11-OCB
- IP Address Autoconfiguration
- Routing
- Mobility Management
- DNS Naming Service
- Service Discovery
- Security and Privacy

Analysis for Current Protocols (2/2)

General Problems

- Vehicular Network Architecture
- Latency
- Security
- Pseudonym Handling

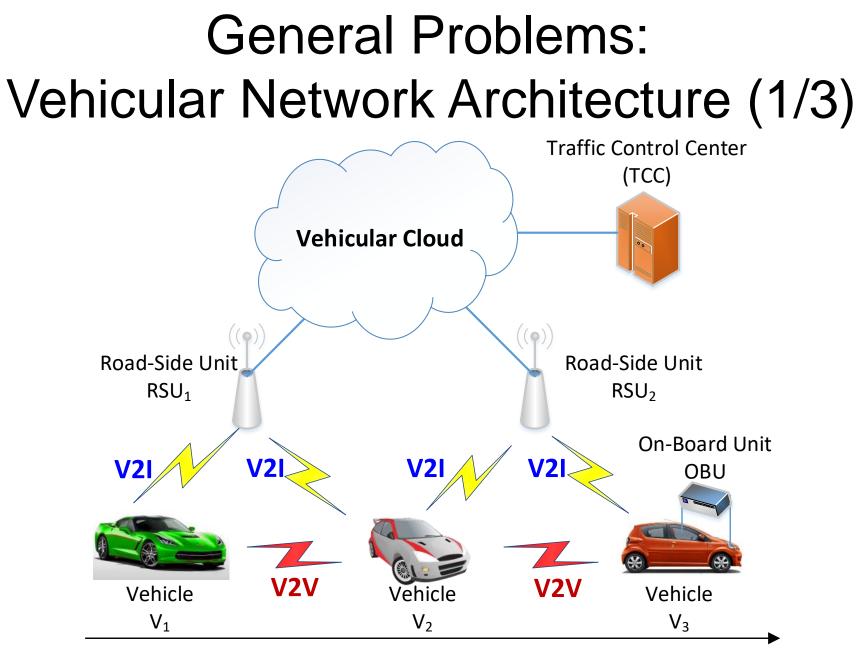


Figure 1: A Vehicular Network Architecture for V2I and V2V Networking

General Problems: Vehicular Network Architecture (2/3)

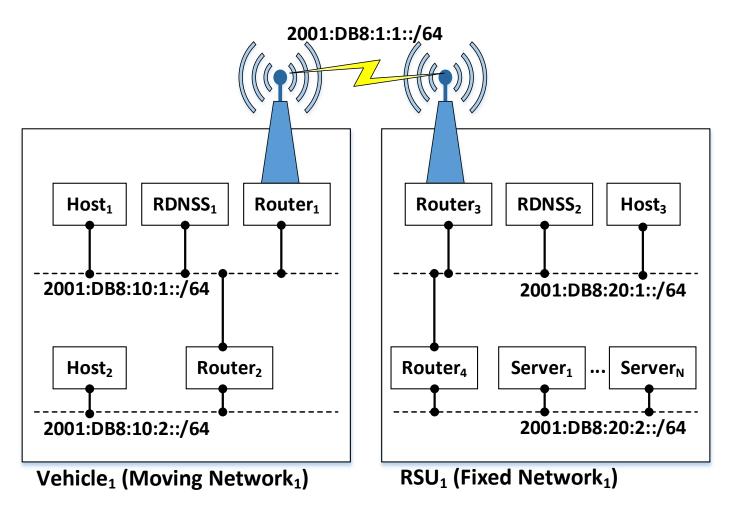
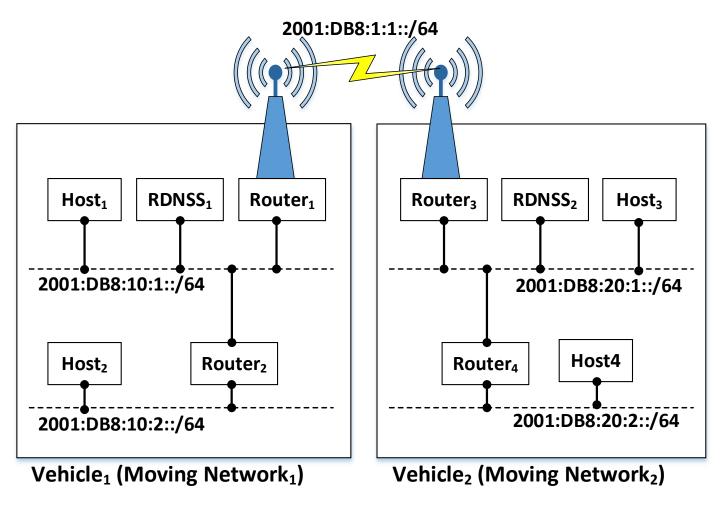



Figure 2: Internetworking between Vehicle Network and RSU Network

General Problems: Vehicular Network Architecture (3/3)

Figure 3: Internetworking between Two Vehicle Networks

Problem Exploration

- Key Work Items in IPWAVE
 - Neighbor Discovery
 - Mobility Management
 - Security and Privacy
- Relevant Work Items to IPWAVE
 - Vehicle Identity Management
 - Multihop V2X
 - Multicast
 - DNS Naming Services and Service Discovery
 - IPv6 over Cellular Networks

Neighbor Discovery (ND) (1/3)

- IPv6 ND needs to be tailored for vehicular networking (V2V, V2I, and V2X) having
 - dynamically change topology,
 - multihop forwarding, and
 - high-speed vehicles.
- ND Parameter Adjustment is required:
 - Router lifetime, and
 - Neighbor Advertisement (NA) interval

Neighbor Discovery (ND) (2/3)

Link Model

- IPv6 protocols have an invalid link model in WAVE:

- The <u>IPv6 link model's</u> assumption for <u>symmetry in</u> <u>connectivity</u> between neighboring interfaces.
- <u>The existence of unidirectional links</u> due to interference and different Tx power levels.
- <u>Unreachability between two nodes with the same</u> <u>prefix</u> due to node mobility and highly dynamic topology in VANET.
- IPv6 ND should be extended to <u>support the</u> <u>concept of a WAVE link</u> in terms of <u>multicast in</u> <u>VANET</u>.

Neighbor Discovery (ND) (3/3)

- MAC Address Pseudonym
 - MAC address change should consider the maintenance of end-to-end transport-layer session according to IPv6 address change.
- Prefix Dissemination/Exchange
 - The <u>communication of two nodes</u> within different internal networks (i.e., vehicle and RSU) requires <u>an ND extension</u> or <u>routing</u> for efficient prefix dissemination/exchange.

Mobility Management

- Efficient mobility management is required for
 - <u>seamless connectivity</u> and <u>timely data exchange</u> between two end points.
- GPS navigator-based trajectory can be used for proactive mobility management:
 - A <u>vehicle's mobility information</u> (e.g., position, speed, direction, and trajectory) is periodically reported to a Traffic Control Center (TCC).
 - With prediction of vehicle mobility, TCC supports RSUs to perform <u>DAD</u>, data packet forwarding, and handover in a proactive manner.

Security and Privacy (1/2)

- Authorized Communication
 - Only authorized nodes (e.g., vehicles, invehicle devices, and mobile devices) should be allowed to use vehicular networking (V2V, V2I, and V2X).

Authentication of Vehicle and User

- VIN and user certificate with in-vehicle device's ID generation can be used for the authentication of a vehicle or a user.
- This authentication can be performed by an RSU connected to an <u>authentication server in</u> <u>TCC.</u>

Security and Privacy (2/2)

Secure V2I/V2X Communication

- <u>A secure channel</u> between <u>a vehicle's mobile</u> router and an RSU's fixed router needs to be used for <u>secure V2I communication</u>.
- <u>A secure channel</u> between <u>a vehicle's mobile</u> <u>router and another vehicle's mobile router</u> needs to be used for <u>secure V2V communication</u>.
- <u>Transport Layer Security (TLS) certificates</u> can be used for <u>secure end-to-end communications</u>.

• Privacy

- MAC address pseudonym can prevent an adversary from tracking a vehicle or user.
- Such a pseudonym needs to <u>consider the</u> <u>continuity of an end-to-end session</u>.

Next Steps

WG Last Call

– During WGLC, we will collect feedback from IPWAVE WG and reflect it on the revisions.

IESG Submission

– We aim at submitting the document to the IESG before IETF-103 meeting.

APPENDIX: RELEVANT WORK ITEMS TO IPWAVE

Vehicle Identity Management

- A vehicle can have multiple network interfaces for different access network technologies (e.g., DSRC, and 4G-LTE).
 – This means multiple identities of a vehicle.
- In this situation, a Vehicle Identification Number (VIN) can be used for a globally unique vehicle identifier.
- To support seamless connectivity over multiple identities,
 - A cross-layer network architecture is required with vertical handover functionality.

Multihop V2X

- Multihop packet forwarding among vehicles in 802.11-OCB mode shows an unfavorable performance due to the common known broadcast-storm problem.
 - Improvements in Layer-2 are
 - Probability-based methods,
 - Clustering-based methods, and
 - RSU-assisted methods.

Multicast

- IP multicast in vehicular network environments is especially useful for various services:
 - Multicast service notifications to a particular group/class/type of vehicles, and
 - Disseminate alert messages in a particular area.
- Some performance issues about multicast are found in [Multicast-802]
 - Neighbor Discovery and Service Discovery may fail.
 - DAD process may fail.
 - Router Advertisement (RA) messages can be lost.

DNS Naming Services and Service Discovery

- DNS name-based communication between IPv6 nodes (e.g., in-vehicle devices) requires DNS name resolution.
 - For this resolution, <u>Recursive DNS Servers</u> (RDNSSes) should be advertised to them.
- Service discovery is required for an in-vehicle device to <u>search for an application</u> (or server).
 - It <u>resides in another internal network</u> within another vehicle or an RSU.
 - <u>DNS-SD</u> and <u>Vehicular ND</u> can be used.

IPv6 over Cellular Networks (1/2)

- 3GPP-Release 14 (3GPP-R14) announced V2X services support;
 - Using the modified sidelink interface is previously designed for LTE Device-to-Device (LTE-D2D).
 - Only 3GPP-R14 supports IPv6 implementation.
- [TS-23.285-3GPP] instructs that a UE autoconfigures a link-local IPv6 address by following [RFC4862];
 - It does not sends Neighbor Solicitation and Neighbor Advertisement messages for DAD.

IPv6 over Cellular Networks (2/2)

- [TR-22.886-3GPP] is studying new use cases for V2X using 5G new radio in the future:
 - Platooning
 - Sensor and state map sharing
 - Remote driving
 - Automated cooperative driving
 - Dynamic ride sharing
 - Emergency trajectory alignment
 - Software update for ECU
 - etc.