draft-li-dynamic-flooding-05

Tony Li (tony.li@tony.li)
P. Psenak (ppsenak@cisco.com)
Changes From Previous Version

• Includes extensions for ISIS, OSPF and OSPFv3
• Two modes of operation
 • Centralized
 • Distributed
Area Leader

• Centralized mode
 • Responsible for computing and distributing the flooding topology

• Distributed mode
 • The distributed algorithm advertised by the Area Leader MUST be used by all routers that participate in Dynamic Flooding

• Not every router needs to be a candidate to become an Area Leader
 • Single candidate is sufficient for correct operation
 • Multiple candidates recommended for redundancy
Computation of Flooding Topology

- **Centralized mode**
 - Exact algorithm does not need to be known and standardized

- **Distributed mode**
 - All nodes in the IGP area MUST use the same algorithm to compute the flooding topology
 - It is possible to use private algorithms to compute flooding topology, if the all nodes in the area use the same one
 - Responsibility of the operator to make sure that all nodes have a common understanding of what the given algorithm value represents
 - Routers that do not support the value of algorithm advertised by the Area Leader MUST continue to use legacy flooding mechanism.
IS-IS Area Leader Sub-TLV

- Algorithm - a numeric identifier in the range 0-255 that identifies the algorithm used to calculate the flooding topology.

- 0: Centralized computation by the Area Leader
- 1-127: Standardized distributed algorithms
- 128-254: Private distributed algorithms
- 255: Reserved
IS-IS Area System IDs TLV

- Only used in centralized mode
- “Ending Index” has been removed – was redundant
 - we have the TLV length
- Handling of multiple IS-IS Area System IDs TLVs with the L bit set
Flooding Behavior

• Link state updates received on one link in the flooding topology MUST be flooded on all other links in the flooding topology
• Link state updates received on a link not in the flooding topology MUST be flooded on all links in the flooding topology
• When the flooding topology changes on a node the node MUST continue to flood on the union of the old and new flooding topology for a limited amount of time.
 • Provide all nodes sufficient time to migrate to the new flooding topology
 • Makes sure that the flooded data will be delivered to all nodes at all times
OSPF Extensions

- OSPF Area Leader Sub-TLV
 - Top level TLV of the Router Information LSA
 - Used by both OSPF and OSPFv3
 - Used in both centralized and distributed modes

- OSPFv2 Dynamic Flooding Opaque LSA
 - New OSPFv2 Opaque LSA
 - Only used in Centralized mode

- OSPFv3 Dynamic Flooding LSA
 - New OSPFv3 LSA
 - Only used in centralized mode

- OSPF Area Router IDs TLV, OSPF Flooding Path TLV
 - Top level TLVs of:
 - OSPFv2 Dynamic Flooding Opaque LSA
 - OSPFv3 Dynamic Flooding LSA
Next Steps ...

• WG adoption
• Continue to evolve the draft
• Define a standardized distributed algorithm(s) for computing flooding topology.
 • Ideas are welcomed
• Work on implementation