Preferred Path Routing (PPR) in IGPs

draft-chunduri-lsr-isis-preferred-path-routing-01
draft-chunduri-lsr-ospf-preferred-path-routing-01

Uma Chunduri, Richard Li [Huawei USA]
Russ White [LinkedIn]
Jeff Tantsura [Nuage Networks]
Luis M. Contreras [Telefonica]
Yingzhen Qu [Huawei USA]

LSR WG, IETF 102, Montreal
SR Network

SR Path:

- All nodes: A1 to A7 and B1 to B7 (In the above Picture uses SR-MPLS)
- Shortest Path from A1 to A7: A2-A3-A4-A5-A6-A7
- The above SR path uses both node and adjacency SIDS a stack of 8 labels.

- This number can be higher based on MSD Capabilities of intermediate nodes and ELI/EL pair or because of Service Labels
- If this were to use for IPv6 data plane – RFC8200 IPv6 Encap. + SRH with 8 SRv6 SIDs
Issues:

- **Hardware capabilities**: Not all nodes can push/read label stack needed.
 - MSD only helps to mitigate, if there is an alternate NSP, which meets the operator requirements

- **Line Rate**: Potential performance issues with increased size of SRH with IPv6 SIDs

- **MTU**: Potential MTU/Fragmentation issues with large SID stack (SR-MPLS, SRH)

- **Header Tax**: NW/Path overhead relative to actual application data, especially for small payload packets (mIOT and uRLLC in 5G or in various fixed scenarios).
- New top level MT aware TLV with control plane prefix
- Data plane identifier (PPR-ID) with data plane type (e.g. MPLS, SRH, IPv6 etc..)
- Path Description Element Sub-TLV (ordered path info of underlying data plane)
- PPR Attribute Sub TLVs –path attributes including but not limited traffic accounting
Computation

- **Strict PPR**: R1-R8-R9-R10-R4 for a prefix from R4

- After R9 receives the path, after SPF computation it check if R9 is itself on the path

- For E.g.: @R9: Without the above PPR, for R4’s FEC, R9 would have set the NH to R11, but it changes to R10.

- Same applies to all the nodes in the path (R1, R8 etc..).

- **Loose PPR**: R1-R6-R7-R4 for a reachable prefix of R4 with ‘L’ bit set.

- Control plane processing is same Strict PPR. Various data plane differences in the document.

In Summary:

- Change the next hop from actual shortest path NH to the NH of the immediate segment as described in the PPR TLV.

- Data-plane: IGP programs the received PPR-ID to the corresponding NH calculated as above (based on the data plane type)

- Existing protections/IP-FRR works as is; per new NH (but more can be done).
Relation To Binding SID

- Not related
 - Earlier version of SR draft has EROs
- IS-IS Binding SID advertises the SID on behalf of one or *more* nodes in the network

Traffic Accounting

- Traffic Accounting Statistics through PPR with PPR-ID

 - **OPT1:** Offline Provisioning and collecting from the nodes as needed based on the operator
 - PPR-ID representing the PPR simplifies this operation for Operators

 - **OPT2:** Dynamically enable stats for certain PPRs through optional PPR Attribute Sub-TLVs (traffic accounting with fine granularity for some PPRs as needed automatically). No need for additional labels and MSD/RLD compatibility issues.
8 Node NSP with RLD = 6

- This can be seen as equivalent of single shortest path SID (LDP equivalent); i.e., PPR is represented with one label as in the DP

- Though Service Label is shown as one, it can be more in most deployments/various scenarios

Summary:

- **Prefix**: Shortest Path SID
- **PPR-ID**: Ordered list of stacked segments
- **SID**: Service Label
- **Payload**: Data plane with PPR-ID (SR-MPLS)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>SID</th>
<th>PPR-ID</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID:20</td>
<td>SID:80</td>
<td>SID:120</td>
<td>SID:70</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>SID</th>
<th>PPR-ID</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>SID</td>
<td>PPR-ID</td>
<td>Payload</td>
</tr>
</tbody>
</table>

This table shows the relationship between different prefixes, SIDs, and PPR-ID, illustrating the structure and layering involved in data plane operations with PPR-ID (SR-MPLS).
Data plane with PPR-ID (with SRH)

SRH with 8 Segment PPR

Segment List[0] (A5's 128 bits IPv6 address)
Segment List[1] (A8's 128 bits IPv6 address)
Segment List[2] (B1's 128 bits IPv6 address)
Segment List[3] (B2's 128 bits IPv6 address)
Segment List[4] (B3's 128 bits IPv6 address)
Segment List[5] (A9's 128 bits IPv6 address)
Segment List[6] (A5's 128 bits IPv6 address)
Segment List[7] (A8's 128 bits IPv6 address)
Segment List[8] (A7's 128 bits IPv6 address)
Segment List[9] (Service SID 128 bits IPv6 address)

// Optional Type Length Value objects (variable) //

// Segment List[0] (NSPF-ID 128 bits IPv6 address)
Segment List[1] (Service SID 128 bits IPv6 address)

// Optional Type Length Value objects (variable) //

//
Yang Data Model

• Yang data model for Preferred Path Routing

Scaling & Other Aspects

- **Scalability**

 - In a network with N nodes and with $O(N^2)$ total unidirectional paths with (k) multiple such path only small set are preferred paths based on the deployment (for high value traffic Detnet, 5G Slices)

 - However to address the scaling of preferred paths a TREE structure can be used and details are in [I-D.draft-ce-ppr-graph-00].

 - Each PPR Tree uses one label/SID and defines paths from any set of nodes to one destination, thus reduces the number of entries needed from SRGB at each node (more details in the draft).

 - In other word, PPR Tree identifiers are destination identifiers and with this scaling simplifies to linear in N i.e., $O(k*N)$.

- **Support for native IP data planes (IPv4 and IPv6) with only control plane upgrades**

 - Needs respective IP encapsulation with destination IP as PPR-ID

 - Needed for slow migration and backward compatibility, More details in the draft
DMM WG is responding to 3GPP Study item for optimized 5G user plane

✓ This work helps most of the proposals to reduce the transport overhead on N9 interface.
Status & Next Steps

- Concept Presented at IETF101; lot of offline feedback and updates
- Comments?
- Request WG Adoption

Thank you!