ISIS extensions for SRv6

draft-bashandy-isis-srv6-extensions-03

Clarence Filsfils, Cisco Systems
Les Ginsberg, Cisco Systems
Peter Psenak, Cisco Systems
Ahmed Bashandy, Individual
Bruno Decraene, Orange
Zhibo Hu, Huawei

102nd IETF, Montreal, July 2018
Contributors

Stefano Previdi, Huawei
Daniel Voyer, Bell Canada
Satoru Matsushima, Softbank
Bart peirens, Proximus
Hani Elmalky, Ericsson
Prem Jonnalagadda, barefootnetworks
Milad Sharif, Barefoot
Robert Hanzl, Cisco
Ketan Talaulikar, Cisco
Paul Wells, Cisco

102nd IETF, Montreal, July 2018
OSPFv3 Equivalent

draft-li-ospf-ospfv3-srv6-extensions-01

Zhenbin Li, Huawei Technologies
Zhibo Hu, Huawei Technologies
Dean Cheng, Huawei Technologies
Ketan Talaulikar, Cisco Systems
Peter Psenak, Cisco Systems

102nd IETF, Montreal, July 2018
Changes since V2

Node SID TLV has been replaced with an SRv6 Locator TLV.

End SIDs are now advertised as a sub-TLV of the SRv6 Locator TLV.

SRv6 related SID depth advertisements are now done using the MSD sub-TLV defined in draft-ietf-isis-segment-routing-msd

Full support for topologies and algorithms is now defined.

102nd IETF, Montreal, July 2018
Locators and SIDs

SRv6 SID is a 128 bit value

LOC:FUNCT
 LOC (the locator portion) is the L most significant bits
 FUNCT is the 128-L least significant bits.

Locators/SIDs are topology/algorithm specific

Each locator is a covering prefix for all SIDs provisioned on that node which have the matching topology/algorithm.

This allows only Locators to be installed in the forwarding plane similar to “summary addresses”.

SIDs are not installed in forwarding on transit nodes.
Locators and SIDs: Example

! MTID 0/Algorithm 0
locator 2001:DB8:0:0::0/64
 !End SID
 2001:DB8:0:0:81::0/128
 !End.X SID
 2001:DB8:0:0:82::0/128
...

!MTID 0/Algorithm 128
locator 2001:DB8:0:1::0/64
 !End SID
 2001:DB8:0:1:20::0/128
 !End.X SID
 2001:DB8:0:1:21::0/128
...

NOTES:
SIDs are “covered” by the corresponding topology/algorithm locator
Function/arguments are in the (128-L) LSBs
SRv6 Locator TLV

- Advertises SRv6 Topology/Algorithm specific locators
- Ignored by legacy nodes
- Forwarding entries are created for the advertised locators when SRv6 and topology/algorithm is supported by the receiving node
- Locators are routable and MAY also be advertised in Prefix Reachability for use by legacy nodes
- Allows SRv6 to work in the presence of legacy nodes
- Prefix Reachability entries preferred over locator advertisements in case of dual advertisements
- Shares sub-TLV space with prefix reachability TLV (135/235/236/237)
- Can be leaked between levels
SRv6 Locator

<table>
<thead>
<tr>
<th>Flags: 0 1 2 3 4 5 6 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

D bit: When the Locator is leaked from level-2 to level-1, the D bit MUST be set.

Algorithm: From IGP Algorithm Registry (0 – 255)

102nd IETF, Montreal, July 2018
SRv6 End SID sub-TLV

• Sub-TLV of SRv6 Locator TLV
• Inherits Topology/Algorithm from the parent Locator
• NOT associated with a neighbor
• MUST be a subnet of the parent locator
• NOT to be installed in RIB/FIB
• Included when topo level TLV is leaked
• Following Endpoint Functions are supported:
 – End (all PSP/USP variants)
 – End.T (all PSP/USP variants)
 – End.OTP
 – End.DT6
SRv6 End SID sub-TLV

Flags: 1 octet. No flags are currently defined.

SRv6 Endpoint Function: 2 octets. As defined in [I-D.filsfils-spring-srv6-network-programming]

SID: 16 octets. This field encodes the advertised SRv6 SID.

Sub-sub-TLV-length: 1 octet. Number of octets used by sub-sub-TLVs
Optional sub-sub-TLVs
Advertising SRv6 End.X SIDs

• Associated with one (possibly multiple) neighbors
• Sub-TLVs of IS-Neighbor TLVs (22, etc.)
• Inherits Topology from the neighbor
• Algorithm MUST be specified
• MUST be a subnet of a locator with matching topology/algorithm
• NOT to be installed in RIB/FIB
• Following Endpoint Functions are supported:
 – End.X (all PSP/USP variants)
 – End.DX6
• Two sub-TLVs: P2P and LAN
SRv6 End.X SID sub-TLV

```
0                   1                   2                   3
+-------------------+-------------------+-------------------+
|   Type        |     Length    |
+-------------------+-------------------+
|   Flags       | Algorithm     |   Weight    |
+-------------------+-------------------+-------------------+
| SRv6 Endpoint Function |
+-------------------+-------------------+-------------------+
| SID (128 bits) . . . |
+-------------------+-------------------+-------------------+
| SID (cont . . .) |
+-------------------+-------------------+-------------------+
| sub-tlv-len   |         Sub-TLVs (variable) . . . |
+-------------------+-------------------+-------------------+
```
SRv6 End.X SID Fields

Flags: 1 octet.

0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|B|S|P|Reserved |
+-+-+-+-+-+-+-+-+

where:

B-Flag: Backup flag. If set, the End.X SID is eligible for protection (e.g., using IPFRR) as described in [RFC8355].

S-Flag. Set flag. When set, the S-Flag indicates that the End.X SID refers to a set of adjacencies (and therefore MAY be assigned to other adjacencies as well).

P-Flag. Persistent flag. When set, the P-Flag indicates that the End.X SID is persistently allocated, i.e., the End.X SID value remains consistent across router restart and/or interface flap.

Other bits: MUST be zero when originated and ignored when received.

Algorithm: From IGP Algorithm Registry (0 – 255)

Weight: Load balancing
SRv6 Capabilities Sub-TLV

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional sub-sub-TLVs …</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flags

<table>
<thead>
<tr>
<th>O</th>
<th>Reserved</th>
</tr>
</thead>
</table>

O-flag: Indicates the router supports use of the 0-bit in SRH (OAM) [I-D.ali-spring-srv6-oam].

102nd IETF, Montreal, July 2018
Advertising Maximum SRv6 Depths

Based on [I-D.ietf-isis-segment-routing-msd]
This allows both per link and per node support.

- **Max-Segments Left**: Maximum Received SL in the SRH
- **Max-End-Pop**: Maximum number of SIDs when applying PSP or USP flavors (0 => not supported)
- **Max-T.Insert**: Maximum number of SIDs when applying $T.insert$ (0 => not supported)
- **Max-T.Encap**: Maximum number of SIDs when applying $T.Encap$ (0=>only IPinIP support)
- **Max-End-D**: Maximum number of SIDs when applying $End.DX6$ or $End.DT6$
Comments welcome