IGP Extensions for Segment Routing based Enhanced VPN (VPN+)

draft-dong-lsr-sr-enhanced-vpn-00

Jie Dong, Stewart Bryant @Huawei

LSR @ IETF 102, Montreal
Background

- Enhanced VPN framework is defined in *draft-dong-teas-enhanced-vpn*
 - To meet the requirements of network slicing and similar scenarios
 - Architecture and candidate technologies for resource isolation and integration
 - Will be presented in TEAS on Wednesday

- SR based enhanced VPN is defined in *draft-dong-spring-sr-for-enhanced-vpn*
 - Extend SR to identify partitioned network resources and create resource isolated virtual networks
 - Please read the document and comment on SPRING list

- IGP extensions for SR based enhanced VPN belongs to LSR
 - Distribution of the “network slice” information to both controller and network nodes
 - Current design: reuse MTR+SR with necessary extensions
 - Mechanism applicable to both SR-MPLS and SRv6
Extend SR for Resource Identification

- Dedicated adj/node-SIDs represent partitioned resources of each link/node
- SIDs associate with virtual networks (network slice)
- Different groups of SIDs construct resource isolated SR virtual networks
Overall Mechanism

- Controller maintains underlay network states and receives service request
- Controller computes the logical topology and the resources need to allocate
- Nodes allocate the resources and the associated adj/node SIDs for the logical topology
- IGP is used to distribute the mapping between (SID, resource, logical topology)
 - Used to build SR forwarding entries for each logical topology
MTR and SR

• MTR was designed to create multiple logical topologies
 • Limited use cases: IPv4/IPv6 topology, unicast/multicast topology
 • Limitation in data plane forwarding
 • Does not support sharing of link/IP address between topologies

• MTR with SR
 • MTR is supported in the IGP extensions for SR-MPLS
 • Allows distribution of topology-specific adj-SIDs and node-SIDs
 • Multiple topologies can be enabled with the same interface/IP address
 • Adj-SIDs as discriminator of different topologies on the same link
 • Node-SIDs as discriminator of different topologies on the same node

• However, neither MTR nor SR support resource isolation/identification
 • SR needs to be extended to identify the forwarding resources allocated
Proposed Mechanism

• MT + SR + Resource Identification
 • Node/interface participates in multiple logical topologies
 • Node/interface resources are partitioned and allocated to each topology
 • Each partition of resource is associated with the adj-SIDs/node-SIDs allocated for a particular topology
 • These SIDs are used to constrain the traffic to the allocated resources
 • Advertise the mapping between (SID, allocated resource) in each topology
 • Support both strict and loose SR path forwarding with topology constraints
Proposed Extensions (IS-IS based)

• SR bandwidth Sub-TLV
 • Describe the link bandwidth associated with a particular adj-SID, for the use in a particular topology
 • Can appear in IS-IS TLV 22, 23, 141, 222, 223

• Multi-topology support in SRv6
 • This document proposes a new MT-ID sub-TLV under the SRv6 node-SID TLV
 • The newly updated draft-bashandy-isis-srv6-extensions-03 also introduces the support of multi-topology with SRv6
Next Steps

• Solicit feedbacks on the proposed IS-IS extensions for enhanced VPN/network slicing

• Extend this work to OSPF
Thank You
Backup Slides
Relationship with SR Flex-Algo

• SR Flex-Algo is topology independent
 • Used for distributed computation of different paths for different services types
 • Network resource is shared by all Flex-Algo

• Multiple SR algorithms/Flex-Algos may be used within a topology