Alternative Elliptic Curve Representations
Status

History:
– Initial document presented on March 21, 2018 @ IETF-101

Background:
– NIST curves and CFRG curves use different curve models, thereby seemingly precluding code reuse
– Draft shows how curve models are related, by showing how one can switch between curve models via alternative representations
– Draft illustrates how to reuse existing code for NIST prime curves to implement CFRG curves (e.g., combine P256 curve + Curve25519)
– Draft also illustrates how to use this to reuse existing standards
Status

What is new in version 01?
– Old draft showed how to reuse generic existing ECC code
– New draft shows how this also works for non-generic existing implementations:
 ♦ implementation that hardcodes specific domain parameters
 (e.g., code uses Jacobian coordinates and hardcodes \(a = -3 \))
 ♦ implementation that allows speed-up if domain parm \(a \) is small
 (draft shows how to end up with short-Weierstrass curve with domain parameter \(a = 2 \) [thereby, improving speed])

What is next?
– Draft still needs detailed mappings for short-Weierstrass curve with \(a = -3 \) (once computations finished) [NOTE: this is one para...]

Implementation:
– Being implemented by Nikolas Rösener (Bremen University)

draft-struik-lwig-curve-representations-01
Next Steps?

Questions:
– Is this useful to LWIG?
– Should we make this a WG draft (intended status: informational)?
– Are there any other ECC implementation mysteries to be dissipated?