UDP Packet Reordering

MAPRG: IETF 102

Ian Swett

Data from Chrome Stable and Google Servers
- Client side reordering data = Client (Chrome) received a packet out of order
 - Direction information, based on received packets
 - Server using BBR congestion control
 - Chrome Stable
 - Representative of bulk flow reordering
- Server side reordering data = Server received a packet out of order
 - Direct information, based on received packets
 - Client using Cubic congestion control
 - Only CDN nodes
 - Represents mostly receipt of handshakes, requests, etc

QUIC code [here](#)
Percent of Connections with at least one Reordering

Client (server sent)
- No Reordering: 94.6%
- Has Reordering: 5.4%

Server (client sent)
- No Reordering: 90.6%
- Has Reordering: 9.4%
Remaining data *excludes* connections with no reordering
Note: Log X scale for packet numbers
Client: Max time in fraction of min_rtt

Note: 91.5% are less than 12.5% (recommended QUIC reordering threshold)
Client: Max time in fraction of min_rtt (min_rtt >100ms)
38% had only one packet reordered
Server: Percent Reordered

Percent Reordered

Percent Reordered

Percentile

Percent Reordered

Percentile
Server: Max gap in QUIC packet number

Max Reordering In Packet Number

Max In Packet Number

Percentile
Server: Max time in fraction of min_rtt (min_rtt >100ms)

Note: 96% are less than 12.5% (recommended QUIC reordering threshold)
Conclusion

- The vast majority of connections see no reordering
- The tail is very long
- QUIC runs in userspace, so small networking reordering may translate to a few ms of transport reordering
 - => TCP may see a bit less reordering
- \(\frac{1}{8} \) RTT reordering threshold in QUIC is large enough for >99% of connections (>100ms)
- Adaptive loss detection should consider starting with a very short threshold to minimize recovery time