UDP Packet Reordering MAPRG: IETF 102

lan Swett

Data from Chrome Stable and Google Servers

IETF 102: Montreal, July 2018

Outline

- Client side reordering data = Client(Chrome) received a packet out of order
 - Direction information, based on received packets
 - Server using BBR congestion control
 - Chrome Stable
 - Representative of bulk flow reordering
- Server side reordering data = Server received a packet out of order
 - Direct information, based on received packets
 - Client using Cubic congestion control
 - Only CDN nodes
 - Represents mostly receipt of handshakes, requests, etc

QUIC code <u>here</u>

Percent of Connections with at least one

Server (client sent)

Remaining data **excludes** connections with no reordering

Client: Max gap in QUIC packet number

Note: Log X scale for packet numbers

Client: Max time in fraction of min_rtt

Percent vs. % min_rtt

Note: 91.5% are less than 12.5% (recommended QUIC reordering threshold)

Client: Max time in fraction of min_rtt (min_rtt >100ms)

Percent vs. % min_rtt

% min_rtt

Server: Number Reordered

Server: Percent Reordered

Server: Max gap in QUIC packet number

Percentile

Server: Max time in fraction of min_rtt (min_rtt >100ms)

Note: 96% are less than 12.5% (recommended QUIC reordering threshold)

Conclusion

- The vast majority of connections see no reordering
- The tail is very long
- QUIC runs in userspace, so small networking reordering may translate to a few ms of transport reordering
 - => TCP may see a bit less reordering
- ¹/₈ RTT reordering threshold in QUIC is large enough for >99% of connections(>100ms)
- Adaptive loss detection should consider starting with a very short threshold to minimize recovery time