
1/29

When the Dike Breaks:
Dissecting DNS Defenses During DDoS

Giovane C. M. Moura1,2, John Heidemann3,
Moritz Müller1,4, Ricardo de O. Schmidt5, Marco Davids1

giovane.moura@sidn.nl

1SIDN Labs, 2TU Delft, 3USC/ISI,
4University of Twente, 5University of Passo Fundo

IETF 102 - MAPRG - Montreal, Canada

paper: https://www.isi.edu/~johnh/PAPERS/Moura18a.pdf

giovane.moura@sidn.nl
https://www.isi.edu/~johnh/PAPERS/Moura18a.pdf

2/29

DDoS Attacks

I DDoS attacks are on the rise
I Getting bigger, more frequent, cheaper, and easier

I Arbor: 1.7 Tb/s [2] (2018)
I Github DDoS: 1.35 Tb/s [1] (2018)
I Dyn DDoS: 1.2 Tb/s (Mirai IoT) [5] (2017)
I DDoS as a service: few dollars with booters [7].

I The DNS is a juicy target
I Many DNS services have been victim of DDOS attacks
I You can do filtering, scrubbing, etc

I But DNS has many built-in features to operate under stress
I Tons of work at the IETF
I We investigate those in the paper: the built-in robustness of

DNS

3/29

DDoS and DNS: two examples

Root DNS DDoS Nov 2015

no known reports of errors
seen by users [3]

Dyn Oct 2016

some users could not reach
popular sites [5]

Two large DDoSes, very different outcomes. Why?

3/29

DDoS and DNS: two examples

Root DNS DDoS Nov 2015

no known reports of errors
seen by users [3]

Dyn Oct 2016

some users could not reach
popular sites [5]

Two large DDoSes, very different outcomes. Why?

4/29

What Accounts for Different Outcomes?

I What factors affect the DNS user experience?
I When does DDoS cause “no change” vs. “sporadic

problems”?
I Common knowledge: recursives caching and retries help?
I Can we quantify how much and when?
I Can DNS operators and purchasers of their services improve?

5/29

Background: the many parts of DNS

Stub Resolver
e.g.: OS/applications

Recursives
(1st level

e.g.: modem)

Recursives
(nth level)

e.g: ISP resolv.

Authoritative
Servers

e.g.: ns1.example.nl

Stub

R1aCR1a
R1b CR1b

RnaCRna
... Rnn CRnb

AT1 ... ATn

Figure: Relationship between stub resolver (yellow), recursive resolvers
(red) with their caches (blue), and authoritative servers (green).

Important: Auth servers set TTL of DNS records→ max value for
recursives keep a record in cache

ns1.example.nl

6/29

So, can we evaluate DNS built-in resilience?

I Part 1: evaluate user experience under “normal” operations
I learn about how much is cached/retried in a controlled env.

I Part 2: Verify results of part 1 in production zones (.nl)
I Part 3: Emulate DDoSes in the wild to evaluate

caching/retrials under stress, to observe user experience

.nl

7/29

Part 1: measuring caching in the wild

Setup:
I register our new domain (cachetest.nl)
I run two unicast IPv4 authoritatives on EC2 Frankfurt

I we do not analyze anycast auth in this work

I User Ripe Atlas and their resolvers as vantage points (∼ 15k)
I Each VP sends a unique query, so no interference other

I e.g.,: 500.cachetest.nl for probeID=500

I Each DNS answer encodes a counter that allow us to tell if it
was cache hit or miss (see paper)

I we probe every 20min (1200s), and run scenarios with
different TTLs, for 2 to 3 hours

I 60, 1800,3600, and 86400 seconds TTL for each answer

cachetest.nl
500.cachetest.nl

8/29

Part 1: measuring caching in the wild

Stub Resolver
(we control)

Recursives
(1st level

(do not control)

Recursives
(nth level)

(do not control)

Authoritative
Servers

(we control)

Stub

R1aCR1a
R1b CR1b

RnaCRna
... Rnn CRnb

AT1 ... ATn

I We control auth severs and clients (stub resolver)
I How efficient is caching in the wild?

9/29

Results: how good caching is in the wild?

 0

 20000

 40000

 60000

 80000

 100000

 120000

60s 1800s 3600s 86400s 3600s-10m

Miss: 0.0%

Miss: 32.6%

Miss: 32.9%

Miss: 30.9%

Miss: 28.5%

re
m

a
in

in
g

 q
u

e
ri
e

s

Experiment

AA
CC

AC
CA

1. Good news: caching works fine for 70% of all 15,000 VPs
I With our not popular domain

2. Not so good news: ∼ 30% of cache misses (AC)

9/29

Results: how good caching is in the wild?

 0

 20000

 40000

 60000

 80000

 100000

 120000

60s 1800s 3600s 86400s 3600s-10m

Miss: 0.0%

Miss: 32.6%

Miss: 32.9%

Miss: 30.9%

Miss: 28.5%

re
m

a
in

in
g

 q
u

e
ri
e

s

Experiment

AA
CC

AC
CA

1. Good news: caching works fine for 70% of all 15,000 VPs
I With our not popular domain

2. Not so good news: ∼ 30% of cache misses (AC)

10/29

Why cache misses (Why AC?)

Possible: capacity limits, cache flushes, complex caches
Mostly: complex caches

I cache fragmentation with multiple servers
I (previous work on Google DNS [8])

TTL 60 1800 3600 86400 3600-10m
AC Answers 37 24645 24091 23202 47,262

Public R1 0 12000 11359 10869 21955
Google Public R1 0 9693 9026 8585 17325
other Public R1 0 2307 2333 2284 4630

Non-Public R1 37 12645 12732 12333 25307
Google Public Rn 0 1196 1091 248 1708
other Rn 37 11449 11641 12085 23599

Table: AC answers public resolver classification.

11/29

Part 2: caching in production zones

I OK, in our controlled environment, we show that caching
works 70% as expected

I Are these experiments representative?
I We look at .nl data

I we compute ∆t (time since last query)
I Compare to TTL of 3600s
I 485k queries from 7,779 recursives

.nl

12/29

Part 2: caching in production zones

I Two main peaks: start and 3600 (TTL of the record)
I First: happy eye ball (not related to cache) , second yes
I Yes, experiments are like real zone
I (we also look into the roots , see paper)

13/29

OK , so far, what do we have?

I We know how caching works in the wild
I Time to move Part 3: emulate DDoS to evaluate DNS built-in

resilience
I Goal: understand client experience under DDoS

14/29

Part 3: Emulating DDoS
I Similar setup as other experiments:

I Two NSes on EC2 (Frankfurt)
I 15,000 Vantage Points (Ripe Atlas)
I Emulate DDoS: drop incoming queries at certain rates at

Authoritative servers, with iptables

I Question: (when) do caches protect clients?
I Or why some DDoS attacks seem to have more impact?

Stub Resolver
(we control)

Recursives
(1st level

(do not control)

Recursives
(nth level)

(do not control)

Authoritative
Servers

(we control)

Stub

R1aCR1a
R1b CR1b

RnaCRna
... Rnn CRnb

AT1 ... ATn

15/29

Complete DDoS: TTL: 60min, 100% failure
I This is doomsday for DNS ops: all auth DNS down
I How much cache can protect? For how long?

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100 110

cache-only cache-expired

an
sw

er
s

minutes after start

OK SERVFAIL No answer

Figure: Scenario A: 100% failure after 10min, TTL: 60min

I DDoS starts after 1st query (fresh cache)
I During DDoS: 35%-70% of clients are served,from cache
I After cache expires: only 0.2% clients served (serve state)

I draft-ietf-dnsop-serve-stale-00

15/29

Complete DDoS: TTL: 60min, 100% failure
I This is doomsday for DNS ops: all auth DNS down
I How much cache can protect? For how long?

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100 110

cache-only cache-expired

an
sw

er
s

minutes after start

OK SERVFAIL No answer

Figure: Scenario A: 100% failure after 10min, TTL: 60min

I DDoS starts after 1st query (fresh cache)
I During DDoS: 35%-70% of clients are served,from cache
I After cache expires: only 0.2% clients served (serve state)

I draft-ietf-dnsop-serve-stale-00

16/29

Complete DDoS: changing cache freshness
I Carrying on with more Doomsday
I Scenario B: Cache freshness: about to expire
I How clients will experience DDoS?

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

cache-onlynormal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

Figure: Scenario B: 100% failure after 60min, TTL: 60min

I Cache much less effective (as time out near attack)
I Fragmented cached helps some (by filling later)

16/29

Complete DDoS: changing cache freshness
I Carrying on with more Doomsday
I Scenario B: Cache freshness: about to expire
I How clients will experience DDoS?

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

cache-onlynormal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

Figure: Scenario B: 100% failure after 60min, TTL: 60min

I Cache much less effective (as time out near attack)
I Fragmented cached helps some (by filling later)

17/29

Complete DDoS: TTL record influence
I Influence of TTL: reducing from 60min to 30min
I How clients will experience DDoS?

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

normal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

cache-
only

cache-
expired

Figure: Scenario C: 100% failure after 60min, TTL: 30min

I Users experience worsens a lot with shorter TTL
I OPs: choose wisely the TTL of your records when

engineering for DDoS

18/29

Discussion complete DDoS and user experience

I Caching is partially successful during complete DDoS
I OPs: don’t expect protection for clients as long as your TTL;

depends on their cache state (even pop domains)
I Serve stale provides the last resort for Doomsday scenario

I some ops (Google, OpenDNS) seem to do it, but it is not
widespread yet

I TTL of records: the shorter you set them, the less you protect
users during a complete DDoS

19/29

Partial DDoS

I Not all DDoS are a complete success;
I Some lead to partial failure (Root DNS Nov 2015 [3])

I Partial failure: some of the available authoritative fail to answer
all queries, or take longer to answer; then users experience
longer latencies

I In this case, how would users experience the attack?

20/29

Experiment E: 50% success DDoS, TTL: 30min

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

50% packet loss
(both NSes)

normal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

Good! Most clients are happy, as they retry (but takes longer)

21/29

Experiment H: 90% success DDoS, TTL: 30min

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

Good! Even at 90% packet loss with TTL 30min, most clients
(60%) get an answer!! Thanks IETFers! Good Engineering!

22/29

Experiment I: 90% success DDoS, TTL: 1min
I What’s TTL influence in partial DDoS?

 0

 5000

 10000

 15000

 20000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

an
sw

er
s

minutes after start

OK SERVFAIL No answer

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160

la
te

n
c
y
 (

m
s
)

minutes after start

Median RTT
Mean RTT
75%ile RTT
90%ile RTT

Even with no caching (TTL 1min), 27% get an answer: stale +
retries

23/29

Retries cost: hammering Auth servers
I Part of DNS resilience is that recursives keep on trying to

resolve
I There’s a cost to it however: 8.1x in case of no caching!
I Implications: OPS: be ready for friendly fire

I usually not noticed during DDoS
I If you overprovision level is 10x, imagine that 8.1x extra is only

for friendly fire

 0

 50000

 100000

 150000

 200000

0 10 20 30 40 50 60 70 80 90 100110120130140150160170

90% packet loss
(both NSes)

normal normal

q
u
e
ri
e
s

minutes after start

NS
A-for-NS

AAAA-for-NS
AAAA-for-PID

Figure: Queries received at Auth Servers .Experiment I: 90% success
DDoS, TTL: 1min

24/29

Implications

I Caching and retries work really well
I provided some authoritative stays partially up
I and caches last longer than DDoS (as in TLS, not in CDNs)
I For OPs: make one auth very strong? (careful with load

distrubtion, see [4])

I Explains prior root DDoS outcomes
I There is a clear trade-off between TTL and DNS resilience

I provided caches are filled and not about to expire
I But enable quicker changes in the DNS (Amazon EC2

resolvers cap all answershorter TTLss to 60s [6])
I Many commercial websites have short TTLs

I explains the pain of Dyn‘s customers and users perception
I shorter TTLs given them quicker management options

25/29

Conclusions

I Caching and retries are important part of DNS resilience
I Good engineering: thanks for all IETFers/devs who have build

this
I Experiments show when they help and when they won’t

I No more “it will be in cache , no problem” assumption

I Consistent with recent outcomes
I DNS community:

I There’s a clear trade-off between TTL and DDoS robustness,
choose wisely

I Shall we advocate for serve-state deployment ?
I draft-ietf-dnsop-serve-stale-00

26/29

Questions?

I Tech report:
https://www.isi.edu/~johnh/PAPERS/Moura18a.pdf

I Contact: giovane.moura@sidn.nl
I Thanks RIPE NCC and reviewers of various drafts:

I Wes Hardaker, Duanne Wessels, Warren Kumari, Stephane
Bortzmeyer, and Maarten Aertsen

https://www.isi.edu/~johnh/PAPERS/Moura18a.pdf
giovane.moura@sidn.nl

27/29

References I

[1] Sam Kottler.

February 28th DDoS Incident Report | Github Engineering, March
2018.

. https://githubengineering.com/ddos-incident-report/.

[2] Carlos Morales.

February 28th DDoS Incident Report | Github
EngineeringNETSCOUT Arbor Confirms 1.7 Tbps DDoS Attack; The
Terabit Attack Era Is Upon Us, March 2018.

https://www.arbornetworks.com/blog/asert/
netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/.

[3] Giovane C. M. Moura, Ricardo de O. Schmidt, John Heidemann,
Wouter B. de Vries, Moritz Müller, Lan Wei, and Christian
Hesselman.

Anycast vs. DDoS: Evaluating the November 2015 root DNS event.

In Proceedings of the ACM Internet Measurement Conference,
November 2016.

https://githubengineering.com/ddos-incident-report/
https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/

28/29

References II

[4] Moritz Müller, Giovane C. M. Moura, Ricardo de O. Schmidt, and
John Heidemann.

Recursives in the wild: Engineering authoritative DNS servers.

In Proceedings of the ACM Internet Measurement Conference, pages
489–495, London, UK, 2017.

[5] Nicole Perlroth.

Hackers used new weapons to disrupt major websites across U.S.

New York Times, page A1, Oct. 22 2016.

[6] Alec Peterson.

Ec2 resolver changing ttl on dns answers?

Post on the DNS-OARC dns-operations mailing list,
https://lists.dns-oarc.net/pipermail/dns-operations/
2017-November/017043.html, November 2017.

https://lists.dns-oarc.net/pipermail/dns-operations/2017-November/017043.html
https://lists.dns-oarc.net/pipermail/dns-operations/2017-November/017043.html

29/29

References III

[7] José Jair Santanna, Roland van Rijswijk-Deij, Rick Hofstede, Anna
Sperotto, Mark Wierbosch, Lisandro Zambenedetti Granville, and
Aiko Pras.

Booters—an analysis of DDoS-as-a-Service attacks.

In Proceedings of the 14th IFIP/IEEE Interatinoal Symposium on
Integrated Network Management, Ottowa, Canada, May 2015. IFIP.

[8] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman.

On measuring the client-side DNS infrastructure.

In Proceedings of the 2015 ACM Conference on Internet
Measurement Conference, pages 77–90. ACM, October 2013.

