Use of BIER Entropy for Data Center CLOS Networks

draft-xie-mboned-bier-entropy-staged-dc-clos-00

Jingrong Xie @Huawei
Xiaohu Xu @Alibaba Inc
Mike McBride @Huawei
Gang Yan @Huawei

Problem Statement

- DC-CLOS network: 3 layers, 5 stages, Northwards Stages (stage $1 \& 2$) have rich ECMP.
- Problem 1: Steering for elephant flows (A1->C1->S1-->A2)
- Problem 2: Path Division for Tenant flows to different SIs (A1->C1->S1-->A2, A1->D1->S4-->A3)

Solution by using BIER Entropy

- Stage 1: use bit[0] of the 20-bit Entropy to represent RED and BLUE path.
- Stage 2: use bit[1~2] of the 20-bit Entropy to represent 3 paths to each RED/BLUE cluster.
- Similar to the [ietf-mpls-spring-entropy-label] for multi-staged ECMPs along a path by breaking the 20-bit BIER Entropy into many parts, each part for each staged ECMP.

Local convergence and global optimization S1 S2 S3 S4 S5 S6

- For a flow from A1, originally using Entropy[0]=0, and Entropy[2~1]=00, then
- upwards path(s): A1->C1->S1
- downwards path(s): C1->B1(intra-POD), S1->C2->A2/B2(inter-POD).
- When Link between C1 and B1 fail, then A1 can do local convergence
- upwards path(s): A1->C1->S1, A1->D1. //the BIFT-0 on A1 can converge for BFER<B1> locally.
- downwards path(s): D1->B1(intra-POD), S1->C2->A2/B2(inter-POD).
- A1 can also do a global optimization by using Entropy[0]=1 and Entropy[2~1]=01 or 02.

Forwarding Procedure

- The use of BIER entropy label to select a path between some equal cost paths is a local configuration matter.
- This draft defines a method to use part of the 20-bit entropy label in each router, and this needs a dataplane to do some bit operation function.
- It is expected to be easier than hashing function.

Thank you!

