
MLS@IETF102
WG Info: https://datatracker.ietf.org/wg/mls/about/
Chairs: Nick Sullivan & Sean Turner

https://datatracker.ietf.org/wg/mls/about/

This is a reminder of IETF policies in effect on various
topics such as patents or code of conduct. It is only
meant to point you in the right direction. Exceptions may
apply. The IETF's patent policy and the definition of an
IETF "contribution" and "participation" are set forth in
BCP 79; please read it carefully.
As a reminder:

● By participating in the IETF, you agree to follow
IETF processes and policies.

● If you are aware that any IETF contribution is
covered by patents or patent applications that are
owned or controlled by you or your sponsor, you
must disclose that fact, or not participate in the
discussion.

● As a participant in or attendee to any IETF activity
you acknowledge that written, audio, video, and
photographic records of meetings may be made
public.

● Personal information that you provide to IETF will
be handled in accordance with the IETF Privacy
Statement.

NOTE WELL

As a reminder:
● As a participant or attendee, you agree to work

respectfully with other participants; please contact
the ombudsteam
(https://www.ietf.org/contact/ombudsteam/) if you
have questions or concerns about this.

Definitive information is in the documents listed below and
other IETF BCPs. For advice, please talk to WG chairs or
ADs:

● BCP 9 (Internet Standards Process),
● BCP 25 (Working Group processes),
● BCP 25 (Anti-Harassment Procedures),
● BCP 54 (Code of Conduct),
● BCP 78 (Copyright),
● BCP 79 (Patents, Participation),

● https://www.ietf.org/privacy-policy/ (Privacy Policy)

2

https://www.ietf.org/contact/ombudsteam/
https://www.ietf.org/privacy-policy/

Requests

Minute Taker(s)

Jabber Scribe(s)

Sign Blue Sheets

State your name @ the mic

Keep it professional @ the mic

3

Agenda
Time - Duration

10min Administrivia (Chairs)

5min Charter Review (10K ft level)

10min Architecture

25min Handshake message ordering / server trust

25min ART vs. TreeKEM vs. both

25min Message Protection

25min Authentication

25min A.O.B.

Versioning / extensibility

Interop testing framework

Interim plans
4

Charter Review (10K ft level)

5

Charter Review (key excerpts)

6

The primary goal of this working group is to develop a standard
messaging security protocol for human-to-human(s)
communication with the above security and deployment properties
so that applications can share code, and so that there can be
shared validation of the protocol (as there has been with TLS 1.3).

It is not a goal of this group to enable interoperability/federation
between messaging applications beyond the key establishment,
authentication, and confidentiality services.

While authentication is a key goal of this working group, it is not
the objective of this working group to develop new authentication
technologies.

Architecture Review

7

 Architecture

emadomara@google.com

IETF 102

mailto:emadomara@google.com

System Overview

A1 A2

A3

B1 B2 C1

Delivery ServiceAuthentication Service

D1 D2

Group (A,B,C)

Member A Member B Member C Member D

System Overview

Delivery ServiceAuthentication Service

● Stores user ids to
identity key mappings

● Distributes and
delivers messages
and attachments

● Stores initial key
materials (initKeys)

● *Stores group
membership

System Overview

A1 A2

A3

B1 B2 C1 D1 D2

Group (A,B,C)

Member A Member B Member C Member D

● Register
● Send message
● Invite member
● Join group
● Add device

● Create group
● Receive message
● Remove member
● Leave group
● Remove device

Functional Requirements

● Scalable
○ Support group size up to 50,000 clients

● Asynchronous
○ All client operations can be performed without waiting for the other clients to be online

● Multiple devices
○ Devices are considered separate clients
○ Restoring history after joining is not allowed by the protocol, but Application can provide that.

● State recovery
○ Lost/Corrupted state must be recovered without affecting the group state.

● Metadata collection
○ AS/DS must only store data required for message delivery

● Federation
○ Multiple implementation should be able to interoperate

● Versioning
○ Support version negotiation

Security Requirements

● Message secrecy, integrity and authentication
○ Only current group member can read messages
○ Messages are only accepted if it was sent by a current group member
○ *Message padding to protect against traffic analysis

● Forward secrecy and post compromise security
● Group membership security

○ Consistent view of group members
○ Added clients can’t read messages sent before joining
○ Removed clients can’t read messages sent after leaving

● Attachments security
● Data origin authentication and *deniability

● Delivery service compromise
○ Must not be able to read or inject messages
○ Modified, reordered or replayed messages must be detected by the clients
○ It can mount various DoS attacks.

● Authentication service compromise
○ Can return incorrect identities to the client
○ Can’t be defeated without transparency logging such as KT

● Client compromise
○ Can read and send messages to the group for a period of time
○ It shouldn’t be able to perform DoS attack.
○ Will be defeated once the compromised client updates their key material

Security Considerations

Open Questions ???
● Should the draft define the frequency of key update or keep it open to the

application?

● Should the protocol hide the user devices to protect their privacy?

● Is the server trusted to store group membership?

● Should the draft include section for traffic analysis mitigation (ex message
padding) ?

Handshake Message Ordering

16

 Handshake Messages
 Ordering

emadomara@google.com

IETF 102

mailto:emadomara@google.com

Handshake messages
User messages that change the group state

1. Group Init
2. User Add
3. Group Add
4. Remove
5. Update

● Each handshake message is premised on a given starting state, indicated in its
"prior_epoch" field.

Conflicts: X--> ? <--Y
● Conflicts happen when two or more clients generate handshakes messages

simultaneously, based on the same state.

● Conflicts can be resolved in two approaches
a. Server-forced ordering
b. Client-forced ordering

Starvation
● Both server-forced and client-forced ordering can cause starvation in a busy

group where a given client may never be able to send a handshake message.

● This problem is specific to ART only. TreeKEM merges concurrent update
without rejecting them.

Server-forced ordering
● Messages will have an authenticated sequential counter (epoch)

● The delivery server will dispatch them in order.

● If two messages share the same counter, the server is trusted to choose to
process one of them and reject the other.

● The rejected client will retry after updating its state.

Client-forced ordering
● Two steps update protocol

● Step 1: Propose the update

● Step2: Send the update if it gets approved by 50%+ by other clients

● What if most of the clients are offline ?

Open Questions ???
● Should the Architecture document cover this problem ? (Currently discussed in

the protocol document)

● Is the delivery server trusted to force the ordering?

● Is “Starvation” a real problem in practice?

ART vs. TreeKEM

24

Messaging Layer Security
ART vs TreeKEM

Jon Millican

jmillican@fb.com

Protocol Operations

• Group state at each point in time is stored in a key tree
• Each participant caches a view of the tree
• Protocol operations update the participants’ view of the tree

• Group Creation
• Group-initiated Add
• User-initiated Add
• Key Update
• Remove

Asynchronous Ratcheting Tree

• (Cohn-Gordon et al., 2017, https://eprint.iacr.org/2017/666.pdf)

• Based on a Diffie-Hellman binary key tree.

• Updates to any leaf in logarithmic time.

• Asynchronous operation.

• Proofs of confidentiality of group keys in static groups.

• MLS defines some things that the original paper leaves out of scope:
• More constraints on tree structure
• Membership changes.
• Race conditions.

DH output -> DH key pair

• Derive-Key-Pair maps random bit strings to DH key pairs
• Resulting private key known both original private key holders

 AB = Derive-Key-Pair(DH(A,B))
 / \
A B

e.g.:
 Derive-Key-Pair(X) = X25519-Priv(SHA-256(X))

DH Trees

 ABCDEFG
 / \
 / \
 ABCD EFGH
 / \ / \
 AB CD EF |
 / \ / \ / \ |
A B C D E F G

Part Role
=======================
Root Group Key
Direct Path Update
Copath Add
Frontier Add

leaf + copath -> root
frontier = copath(next)

Group Evolution

 +-> Msg Secret +-> Msg Secret +-> Msg Secret
 | | |
... --> KDF -+-> Init Secret --> KDF -+-> Init Secret --> KDF -+-> Init Secret -->
...
 ^ ^ ^
 | | |
 Update Update Update
 Secret Secret Secret
 ^ ^ ^
 | | |
 Tree Tree Tree
 Root Root Root

Operation 0: Create group

• Can be created directly.
• Can be created by starting with an one-member

group, then doing add operations.

• Current draft does the latter, so there’s no
protocol for creation.

• ART paper specifies the former, but we
don’t use in the draft yet.

 ABCDEFG
 / \
 / \
 ABCD EFGH
 / \ / \
 AB CD EF |
 / \ / \ / \ |
A B C D E F G

Operation 1: Group-Initiated Add

 ABCD
 / \
 AB CD
 / \ / \
A B C D
 / \
 Add Key Init

struct {
 UserInitKey init_key;
} GroupAdd;

// Pre-published UserInitKey for
// asynchronicity

// NB: Add Key has implications
// for removals; “double join”

Operation 2: User-Initiated Add

 ABCD
 / \
 AB CD
 / \ / \
A B C D

struct {
 DHPublicKey add_path<1..2^16-1>;
} UserAdd;

// Pre-published frontier in
// GroupInitKey for asynchronicity

Operation 3: Key Update (for PCS)

 ABCD
 / \
 AB CD
 / \ / \
A B C D

struct {
 DHPublicKey
ratchetPath<1..2^16-1>;
} Update;

// This approach to confidentiality
// is proved in [ART]

Operation 4: Remove

 AXCD
 / \
 AX CD
 / \ / \
A X C D

struct {
 uint32 deleted;
 DHPublicKey path<1..2^16-1>;
} Delete;

// To lock out, update to a key the
// deleted node doesn’t know

// “Double join” issues similar to
// GroupAdd

TreeKEM - an alternative ratcheting tree

• (Barnes, Bhargaven, Rescorla, 2018,
https://www.ietf.org/mail-archive/web/mls/current/msg00117.html)

• New tree-based primitive.

• Based on non-contributive hashing, instead of Diffie-Hellman.

• Encrypts parent nodes to their children, instead of deriving them.

• Most properties directly analogous to ART.

• Key potential improvements over ART:

• Merging simultaneous updates might be better supported.

• Receive updates only O(1) public key operations.

Hash output -> public key pair

• Derive-Key-Pair-TreeKEM maps random bit strings to public
key pairs

• TreeKEM abstracts away the specific algorithm

 H(A) = Derive-Key-Pair-TreeKEM(Hash(A))
 / \
A B

e.g.:
 Derive-Key-Pair(X) = X25519-Priv(SHA-256(X))

TreeKEM Trees - same structure as ART

 H3(C)
 / \
 / \
 H2(C) H2(E)
 / \ / \
 H(A) H(C) H(E) |
 / \ / \ / \ |
A B C D E F G

Part Role
=======================
Root Group Key
Direct Path Update
Copath Add
Frontier Add

leaf + copath -> root
frontier = copath(next)

Group Evolution - matches that of ART

 +-> Msg Secret +-> Msg Secret +-> Msg Secret
 | | |
... --> KDF -+-> Init Secret --> KDF -+-> Init Secret --> KDF -+-> Init Secret -->
...
 ^ ^ ^
 | | |
 Update Update Update
 Secret Secret Secret
 ^ ^ ^
 | | |
 Tree Tree Tree
 Root Root Root

TreeKEM Operation 1: Group-Initiated Add

 H2(Add Key)
 / \
 H(A) H(Add Key)
 / \ / \
A B C Add Key

struct {
 ciphertext PathKeys<1..2^16-1>;
 ciphertext AddKey;
 DHPublicKey NewUserIdentity;

} GroupAdd;

// AddKey transmitted to pre-published
// UserInitKey

// NB: Add Key still has implications
// for removals; “double join”

Operation 2: User-Initiated Add

 H2(D)
 / \
 H(A) H(D)
 / \ / \
A B C D

struct {
 ciphertext PathKeys<1..2^16-1>;
} UserAdd;

// Pre-published frontier in
// GroupInitKey for asynchronicity

Operation 3: Key Update (for PCS)

 H2(B)
 / \
 H(B) H(C)
 / \ / \
A B C D

struct {
 ciphertext PathKeys<1..2^16-1>;
} Update;

Operation 4: Remove

 H2(X)
 / \
 H(X) H(C)
 / \ / \
A X C D

struct {
 uint32 deleted;
 ciphertext PathKeys<1..2^16-1>;
} Delete;

// To lock out, update to the deleted
// node’s path to keys that it doesn’t
// know.

// “Double join” issues similar to
// GroupAdd

Key Comparisons

● Update complexity
○ ART is O(log n) public key operations for every participant.
○ TreeKEM is O(log n) public key operations for sender, O(1) public key

operation for everyone else - with O(log n) hashes.
● Concurrent updates

○ Hashing is non-contributive, so TreeKEM can usually sequence in a manner
computable to everyone.

○ ART cannot usually handle concurrent updates.
○ Note: TreeKEM’s PCS properties here need to be studied.

Open Issues with both

• Tuning up, proving FS and PCS properties of the operations
• … especially Add, Remove

• Logistical details, especially around Remove
• Message sequencing
• Message protection, transcript integrity
• Authentication

• Current draft has a very basic scheme, needs elaboration
• Deniable authentication?

• *Attachments

Message Protection

46

MLS Message Protection

Benjamin Beurdouche & al.
benjamin.beurdouche@inria.fr

What’s in the draft today...
Nothing yet...

What do we need ?
A. Define an Application Key Schedule (AKS)

to go from the Epoch secret to the Application messages encryption keys.

B. Define what algorithms to use and on which objects
to protect Application messages against active network attackers,
improve resistance to traffic analysis and compromised insiders, if possible.

Handshake Key Schedule

“Application secret”

Application Key Schedule
Two main ways of ratcheting secrets: interleaving or in parallel
independently from what we ratchet (Application secret or message encryption key)

- Group ratcheting of the secret (interleaving)
- Participant/Sender ratcheting of the secret (parallel)

Both need to provide security properties such as:
- Forward Secrecy for secrets / keys / messages
- PCS for secrets / keys / messages
- (Key Compromise Impersonation resistance)

We could relax these properties for keys/messages if we really need to...

Group
Ratchet

(TLS-like)

Participant/Sender ratcheting of the secret
TLS-like per-participant Application Key Schedule

Double-Ratchet-like per-participant Application Key Schedule

TLS-like

Double
Ratchet-like

Alexey Ermishkin

Application Key Schedule
Group ratcheting of the secret (interleaving)

+ Reduced complexity (storage)
+ Improved Forward Secrecy (no unused key stored for a long time)
- Reduced ability to handle out-of-order messaging for high

frequency transmissions

Participant/Sender ratcheting of the secret (parallel)

+ Well-known design
+ Able to handle out-of-order messaging
- Higher complexity (storage)
- Weakened Forward Secrecy (if participant never sends)

Application Key Schedule
The choice of the AKS will balance between security, typically FS, and
sending rates...

Both these solution have their own incompatible benefits/drawbacks.

- Group ratcheting of the secret (interleaving)
- Participant/Sender ratcheting of the secret (parallel)

There might be a good intermediate based on more Trees...

Message Encryption
Choosing algorithms and the objects to encrypt is somehow less
controversial...

We need to handle:

- AEAD for integrity/confidentiality/weak authentication
- Padding of messages to improve resistance to Traffic Analysis
- Encrypt the optional strong authenticating value for privacy

considerations (currently a signature but we could do better)

Proposal...
We need to move forward without committing too fast to a design.

A “safe” approach would be to define an initial message protection text
based on an approach we expect will work...

Typically, something like using the per-participant ratcheting scheme
and AEAD ciphers to encrypt the *optionally padded* *optionally signed*
plaintext.

There are two existing PRs that could used for this…

https://github.com/ekr/mls-protocol/pull/54/files
https://github.com/ekr/mls-protocol/pull/50/files

https://github.com/ekr/mls-protocol/pull/54/files
https://github.com/ekr/mls-protocol/pull/50/files

Authentication

59

MLS Authentication
@ IETF 102

What’s in the draft today
Each participant has a long term identity key

Each UserInitKey is signed by the participant’s identity key

GroupInitKeys include a Merkle tree head over the identity keys in the group

Handshake messages are signed by the sender’s identity key and a Merkle proof
of group membership

No credentials => no real identity

What do we need to do here?
class Client {

 onconnect(group) { /* verify identities of other members */ }

 onmessage(msg) { /* verify sender identity */ }

 onnewmember(joiner) { /* verify new member identity */ }

 remove(other) {

 /* fetch and verify copath for other */

 }

}

Remove() requires knowing more of the tree

“Post-connect” cases are easier
Message authentication: Signatures [+ membership proofs]

Proofs not needed if endpoints cache a validated list of public keys

See Message Protection discussion

Authenticating new joiner: Signature + credential in UserInitKey / UserAdd

Should probably do something SIGMA-like (see next slide)

“SIGMA-like”
Incorporate handshake transcript hash

Signature covering prior handshake
plus new message

MAC by new group key

Analogous to TLS 1.3 authentication with
Certificate + CertificateVerify + Finished

“Initialization” case is more expensive
Need to provision new members with O(N) information about the tree…

List of group members’ identities and identity keys (N)

List of public keys for all tree nodes (~2N)

… and enable them to verify that the information is correct

Recall: Handshake messages carry public keys
along a direct path

Messages can be used to distribute the tree
If a participant can see the last message sent by each participant, then he has all
the direct paths => full view of the tree

O(N log N) data to download

Message signatures authenticate sender and membership

Need to ensure continuity of the sequence, reject injected messages

=> Need all messages until you’ve covered all participants

… C A A A B A B A B B B A A B A => Ω(N log N) data

Don’t be afraid of commitment
Include in GroupInitKey:

Commitment to the handshake history
Commitment to the current tree

This allows the distribution of the messages /
tree nodes to be untrusted, e.g., P2P

Summary
Handshake messages are signed with credentials, SIGMA-like

On joining, new joiner receives GroupInitKey

GroupInitKey contains commitment to handshake history, tree

Joiner downloads last message from each sender from somewhere

Plausible? What’s missing / wrong?

Deniability?

Open Questions
Deniability?

Can we avoid the server knowing the whole membership of the group?

Commit to tree + identities in GroupInitKey

Versioning / extensibility

Interop testing framework

Interim plans

72

MLS@IETF102
WG Info: https://datatracker.ietf.org/wg/mls/about/
Chairs: Nick Sullivan & Sean Turner

https://datatracker.ietf.org/wg/mls/about/

