MPLS Encapsulation for SFC NSH
draft-malis-mpls-sfc-encapsulation-01

Andrew G. Malis, Huawei
Stewart Bryant, Huawei
Joel Halpern, Ericsson
Wim Henderickx, Nokia

IETF 102, Montreal
Basic Intention of the Draft

- Defines an encapsulation used to transport SFC packets that use the NSH from one SFF to the next SFF over an MPLS infrastructure.
- Red indicates MPLS-enabled nodes (LSRs) and links in the diagram (adopted from RFC 7665).
Encapsulation Details

• SFF Label is very similar to a PW, VPN, or other service label
 – Like a VPN label, no control word
• SFF Label identifies the SFF instance at the downstream LSR
 – Allows more than one SFF instance at the downstream LSR
 – SFF label(s) advertised by downstream LSR to upstream LSR
 (standard MPLS label advertisement)
 – Label advertisement mechanism(s) could include LDP, RSVP, YANG, BGP, PCEP, etc. (see later slide)
• Because there can be multiple transport labels, works with MPLS-based Segment Routing (SR-MPLS)
 – Works with draft-guichard-sfc-nsh-sr
ECMP Considerations

• ECMP forwarding through the MPLS infrastructure may or may not be desirable for a particular SFC flow
 – Should be avoided for flows that require in-order delivery

• First nibble of the NSH provides protection to prevent unintended ECMP
 – Never equal to 0100 or 0110 to avoid appearing like an IP header to ECMP logic

• If ECMP is desired, MPLS has native mechanisms to provide entropy
 – Entropy label (RFC 6790)
 – Flow-aware transport label (RFC 6391)

• A recommendation between these options is for future study
OAM Considerations

• OAM at the SFC layer is handed by SFC-defined mechanisms (see RFC 8300)
• OAM may be required at the MPLS layer
• If so, standard MPLS-layer OAM mechanisms may be used, such as GAL (RFC 5586)
Comparison with draft-ietf-mpls-sfc

• draft-malis-mpls-sfc-encapsulation transports SFC packets with the NSH between SFFs over an MPLS infrastructure
 – Supports ALL SFC features, including per-packet metadata
• draft-ietf-mpls-sfc uses the MPLS label stack to “logically represent” the NSH for interim deployments in an MPLS infrastructure that doesn’t support the NSH
 – No NSH in packets
 – Encodes the SFC Service Path Indicator and Service Index as “labels” in the label stack
 • SPI and SI labels require processing different from normal label operations, see Section 6
 – No per-packet metadata, only per-flow metadata
 – Metadata requires control plane extensions or a new MPLS special purpose label that carries the metadata in a dedicated packet
Comparison with draft-xuclad-spring-sr-service-programming

• draft-malis-mpls-sfc-encapsulation transports SFC packets with the NSH between SFFs over a general MPLS infrastructure
 – Supports both traditional label swapping and SR-MPLS
 – The usual MPLS state (LIB, etc.) at every LSR when label swapping
 – Intended for SFC infrastructures; SFC NSH is present in every packet

• draft-xuclad-spring-sr-service-programming is intended to support generalized service programming in SR domains
 – Services are associated with SIDs
 • More general than SFC in that “services” could be more than just service functions as defined by the SFC WG
 – Works with both SR-MPLS and SRv6
 – Doesn’t support MPLS label swapping, no MPLS state in the routers
 – NSH is available, using the NSH Carrier TLV, if using standard SFC-defined SFs
Next Steps

• Progress the FFS items
 – ECMP recommendation
 – Control plane for SFF label advertisement
 • Already been in touch with authors of draft-ietf-bess-nsh-bgp-control-plane to discuss adding MPLS labels to the Service Function Instance Route to support this draft
 • Other control plane options?

• Start working towards adoption in the MPLS WG