RESTCONF with Transactions

draft-1lhotka-netconf-restconf-transactions-00

Ladislav Lhotka
(lIhotka@nic.cz)

16 July 2018




Objectives

e transactions with explicit client’s control
e concurrent R/W access of multiple clients

e simple enhancement of RFC 8040, maximum backward compatibility

e NMDA-compliant



Server Implementation

Three datastores:

e operational (NMDA)
e intended (NMDA, but persists across reboots)

e staging (configuration, “per-user private candidate”)

(staging) assumes the role of the “unified” RESTCONF datastore:

PUT /restconf/data/example-jukebox: jukebox/\
library/artist=Foo%20Fighters/album=Wasting%20Light

Resources corresponding to (intended) and (operational) are defined in draft-
ietf-netconf-nmda-restconf.

Recommended implementation of config datastores:
persistent data structures with copy-on-write.



New Operations

commit

¢ staging reset intended

commit: merge (staging) atomically into (intended)

reset: reset (staging) to the content of (intended)

Requirements:

e (intended) must always be valid

e after both operations, (staging) and (intended) must have (conceptually)
the same content



Merge Procedure

Left intentionally unspecified: different use cases may need different ap-
proaches.

Merge conflicts should be preferably resolved automatically, it is also possible
that the client be asked for a manual intervention.



Compatibility with RFC 8040

The presence of (staging) is almost transparent to the user: the interaction is
the same as with standard RESTCONF, except that configuration changes are
not applied.

Clients supporting standard RESTCONF can be used for reading datastores and
editing (staging), the commit and reset operations can be provided separately
(e.g. as curl scripts).



Naming Issues

Different datastores (names) were suggested:

staging — candidate
intended — running

e properties of (intended) are close to what we need (read-only, always valid)

e the datastores on the right are used in NETCONF and their semantics is
(may be) incompatible: writable (running), shared (candidate)

e little interference if NETCONF is used on the same device: contributions
from RESTCONF and NETCONF come together in (intended)



Running Code

JetConf: https://github.com/CZ-NIC/jetconf

e written in Python 3

e uses HTTP/2, only JSON representation

e client certificates for authentication

e callback API for writing specific back-ends

e zipper [1] structure used for configuration data

e not yet NMDA-compatible (datastores, resources)

[1] https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf



https://github.com/CZ-NIC/jetconf
https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf

