
The “Client/Server” Set of Drafts

NETCONF WG
IETF 102 (Montreal)

draft-ietf-netconf-crypto-types-00
draft-ietf-netconf-trust-anchors-00
draft-ietf-netconf-keystore-05
draft-ietf-netconf-ssh-client-server-06
draft-ietf-netconf-tls-client-server-06
draft-ietf-netconf-netconf-client-server-06
draft-ietf-netconf-restconf-client-server-06

Since IETF 101

• adopted the “crypto-types” and “trust-anchors” drafts

• did not unadopt the “keystore” draft

• all drafts updated and submitted as a set

• open issues linger…

2

Relationship between Drafts

3

 crypto-types
 ^ ^
 / \
 / \
 trust-anchors keystore
 ^ ^------+ ^ ^
 | \ | |
 | +-----------+ |
 | / \ |
 ssh-client-server tls-client-server
 ^ ^ ^
 | | |
 | +---------+ |
 | / |
netconf-client-server restconf-client-server

Keep trust-anchors separate from keystore?

History:
– Originally, ietf-keystore had both keys and trust-anchors together.

– ietf-trust-anchors was created in an attempt to get rid keystore

– But we wound up keeping keystore, and trust-anchors remain separate.

Tradeoffs:
– Keeping separate provides more applicable names (keystore just stores

keys) and provides some modularity (drafts can update independently).

– Bringing together would be one less module do deal with…

Options:
1. Keep modules separate (current drafts)

2. Bring together again (like the old keystore draft)

4

Keep "local-or-keystore" keys?

The “local-or keystore” construct came from wanting application-
specific keys (keys that are not shared for any other purpose).

This choice statement accurately configures single-use keys, but it
makes for rather busy models.

An alternative could be to instead have all keys in keystore, and let
the application/operator deal with ensuring that some keys are not
referenced more than once.

Options:
1. Keep “local-or-keystore” (keystore MAY be implemented)

2. Eliminate the “local” option (keystore MUST be implemented)
5

Assuming “local-and-keystore”, how to
disable support for the ”local” choice?

Options:

1. add "if-defined 'not keystore-implemented’" to the "local"
choice. (a *global* on/off switch, not per use of the grouping)

2. add "if-defined 'local-keys-supported’" to the "local"
choice. (a *global* on/off switch, not per use of the grouping)

3. do nothing to the grouping definition, let downstream
modules augment-in their own if-feature statements. (a per-
use switch, but what would the ssh/tls-client-server drafts do when using
the grouping?!)

4. Don’t attempt to disable the “local” choice. (effectively same a
option 3) 6

Should some of Keystore's groupings be
moved to crypto-types?

7

The following groupings are not Keystore-specific:
– public-key-grouping

– asymmetric-key-pair-grouping

– asymmetric-key-pair-with-certs-grouping *

– end-entity-cert-grouping *

– trust-anchor-cert-grouping *?

The following groupings are Keystore-specific:
– local-or-keystore-asymmetric-key-grouping

– local-or-keystore-asymmetric-key-with-certs-grouping *

– local-or-keystore-end-entity-certificate-grouping *

✵ Note that the groupings with an asterisk define a notification (“certificate-expiration”)

Options:

1. move non-Keystore-specific groupings to crypto-types

2. keep non-Keystore-specific groupings in Keystore module

Should algorithm identities be moved from
ietf-[ssh/tls]-common to crypto-types?

8

Uses for identities:
1. to define the algorithm used by a key definition, whether configured locally

or in the Keystore.

2. to constrain the allowed key algorithm types so as to conform to some
security policy.

3. to specify preference for certain key types by the order in which the types
are configured, in case "keys to use"/"keys to check" are unordered lists

Problems:
– three sets of similar identities

– no constraints that the identities used during negotiation have to match the
identities for keys that exist.

No solution options yet – any opinions?

Add a "periodic" feature enabling the initiating
peer to optionally support periodic connections?

Currently, the NC/RC client/server modules enable both persistent and
periodic connections to be configured, but maybe “periodic” should be
optional to implement?

Tradeoffs:
– It seems that periodic connections are not commonly implemented. A feature

would primarily be to accommodate that market trend.

– Periodic connections are incredibly useful and, by not having a feature, we
might nudge the industry into supporting them more.

Options:
– add “periodic” feature (MAY be implemented)

– do not add “periodic” feature (MUST be implemented)

9

Add support for TCP Keepalives?

The NC/RC client/server modules currently support configuring SSH/TLS-level
keepalives.

But TLS-level keepalives aren’t well supported, and so there is a desire to
alternately configure TCP-level keepalives…

A budding IETF statement says that, when using a crypto-transport, the
aliveness checks SHOULD NOT occur via the underlying cleartext protocol layer.

Options:
1. do nothing (only crypto-level keepalives can be configured)

2. add a flag indicating that the keepalives should be TCP-level

3. add a choice statement for the two keepalive options

10

� Thanks for the input! 

11

	Slide 1
	Since IETF 101
	Relationship between Drafts
	Keep trust-anchors separate from keystore?
	Keep "local-or-keystore" keys?
	Slide 6
	Should some of Keystore's groupings be moved to crypto-types?
	Slide 8
	Slide 9
	Add support for TCP Keepalives?
	Thanks for the input! 

