
Al in network = Net For Al

(NOT "Al for Net")

Jeffrey He, Rachel Chen, Qiaoling Wang

July 19th, Montreal

One typical use case: DNN training platform

[1] Michael Alan Chang, Aurojit Panda, Scott Shenker etc, "Network support for DNN Training", 2018, UC Berkeley / Huawei workshop

- Distribution phase : model parameters are distributed from the PS to all the workers
- Aggregation phase: workers calculate the gradients and send them to the PS(parameter sever)
- The traffic models of the two phases are one-to-many and many-to-one
- Reducing network traffic between PS and switch can accelerate the training
- Accelerating DNN training is very important, since one training takes up to tens of days

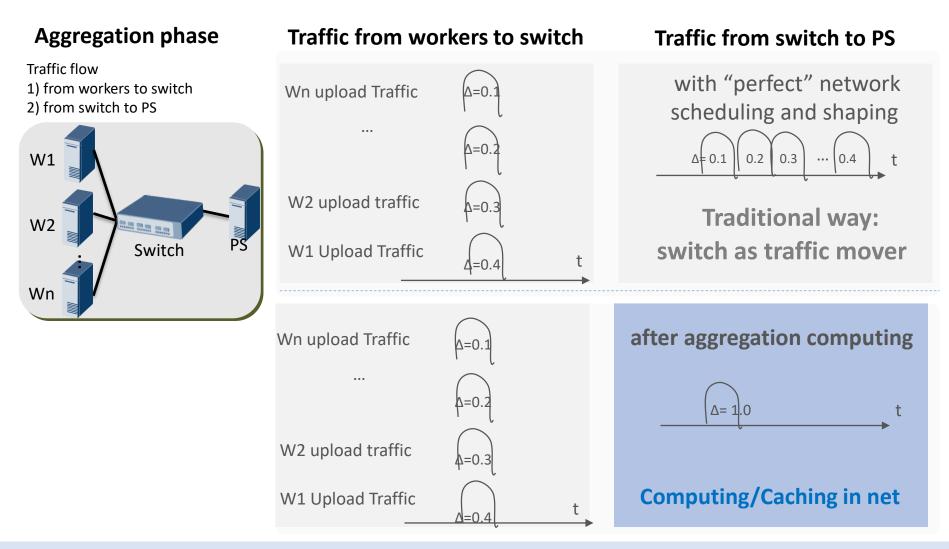
CNN	Parameter Quantity (MB)	Single Iteration Time (s)	Total Training Time (Day)		
AlexNet-v2	192	13.0	18.8	Note:	
Inception-v3	106	4.3	6.23	1 PS + 32 workers, batch size=32,	
Resnet-152	230	12.3	17.8	1 epoch = 125114 iters,	
VGG-16	528	29.0	42.0	100 epochs in total	

Computing and multicast reduce network traffic

- Data transmission between PS and workers takes the majority of the time.
 - Take a 10GE-link as an example, the transmission time is up to dozens of times longer than the calculation time in one single iteration. (eg, VGG-16)

DNN model Parameter Quantity(MB)		Calculation time	Single iteration (ms)	Theoretical Transmission (ms)	
	(ms)	10 Gbps test results	10Gbps	40Gbps	
Inception-v3	106	1035.7	1700	1017.6	254.4
Resnet-152	230	650.9	2781	2208	552
VGG-16	528	285.2	7114	5068.8	1267.2

• Scott Shenker's team (from UC Berkeley) add in-network computing and multicast to


reduce the E2E training time of VGG-16 to 1/29 (when 32 servers were deployed) [1].

DNN Name	Baseline	Mult/Agg		
VGG-16	42.08 sec	1.43 sec	-	
Inception-v3	4.77 sec	1.05 sec	[1] Michael Alen Chang, Aureiit Danda, Coatt Shankar ata	
Resnet-200	13.89 sec	0.96 sec	[1] Michael Alan Chang, Aurojit Panda, Scott Shenker etc,	
Resnet-101	9.09 sec	1.01 sec	"Network support for DNN Training", 2018 , UC Berkeley / Huawei worksh	

Theoretically, when introduce in-network computing and multicast (involves 32

workers), we can still use cheap 10GE switch rather than expensive 100GE.

Why the E2E training time greatly reduced?

Add "computation": in-net aggregation and transfer results to PS, reducing traffic from switch to PS.

Add "cache": store model parameters and distribute to workers, reducing network traffic from PS to switch.

Recent advances in research: Computing

- Amedeo Sapio, Marco Canini, etc. "In net computing is a dumb idea whose time has come ", Hotnets 2017
 - A large data reduction ratio (86.9%-89.3%) and a similar decrease in workers' computation time
 - <u>https://dl.acm.org/citation.cfm?id=3152461</u>
- Michael Alan Chang, Scott Shenker, etc. "ChangNetwork Evolution for DNNs", SysML, Feb 2018, Palo Alto, California
 - Optimizing the network fabric can improve DNN training time
 - https://www.sysml.cc/doc/182.pdf
- R. L. Graham, P. Lui, etc. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction. In COM-HPC, 2016.
 - Improvement of a factor of 3.24 in the latency of a 4096 byte MPI_Allreduce() operations, declining from 46.93 to 14.48 microseconds.
 - <u>https://ieeexplore.ieee.org/document/7830486/</u>
- NetCompute 2018:In-Network Computing workshop in sigcomm2018. (this August)
 - <u>https://conferences.sigcomm.org/sigcomm/2018/workshop-netcompute.html</u>

Recent research: introduce other capabilities to network

• In network cache (maybe obtain the capability similar to the multicast):

- Xin Jin etc, "NetCache: Balancing Key-Value Stores with Fast In-Network Caching", SOSP2017, (UCB: Ion Stocia team)
 - The throughput increases by 3-10 times. The query delay of 40% can be shortened by 50%.
 - <u>https://www.cs.jhu.edu/~xinjin/files/SOSP17_NetCache.pdf</u>
- Xiaozhou Li etc," Be fast, cheap and in control with SwitchKV", (Princeton) NSDI'2016,
 - Increases the throughput by 5 times and improves the delay by 3 times.
 - https://dl.acm.org/citation.cfm?id=2930614

In network consensus

- Huynh Tu Dang etc, "Paxos Made Switch-y", sigcomm CCR 2016, (Marco Canini team)
 - www.sigcomm.org/sites/default/files/ccr/papers/2016/April/0000000-0000002.pdf
- Zsolt István etc," consensus in a box", NSDI 2016,
 - https://dl.acm.org/citation.cfm?id=2930639
- Dan R. K. Ports etc, "Designing Distributed Systems Using Approximate Synchrony in Data Center Networks", (University of Washington)NSDI 2015.
 - <u>https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-ports.pdf</u>
- Jialin Li etc, "Eris: Coordination-Free Consistent Transactions Using In-Network Concurrency Control", (University of Washington) SOSP 2017.
 - <u>https://syslab.cs.washington.edu/papers/eris-sosp17.pdf</u>

Looks Promising? But...

- Adding "X" functions into network violates "end-to-end argument"
 - be cautious to add new functions if they are not used by majority of applications
 - Impact the TCP transport, security and privacy...

Or, maybe we can

- avoid to develop ad hoc solutions
- develop new abstraction of data plane and new architecture to make full use of new programmable networks
- Meanwhile, these capabilities are generic enough and decoupled from specific applications
- Trial it firstly in constrained area of networks like DCN

Also keep in mind...

• Existing programmable network devices were designed for

forwarding, so limited for "X" functions

- the size of cache table
- the number of bytes that the devices can manipulate on each packet
- floating points
- etc...
- Probably a good research topic
 - jump out from the off-shelf devices
 - find out the "sweet spot" between the pain(extra cost) and the gain
 - provide requirements for next generation of programmable devices
 - etc ...

Any comments are welcomed.

For further discussion/ comments

chenlijuan5@Huawei.com