Generic API for Sliding Window
FEC Codes

draft-roca-nwcrg-generic-fec-api-02

Vincent Roca (Inria) (ed), Jonathan Detchart (ISAE-Supaéro)
Cédric Adjih (Inria), M. Pedersen (Steinwurf ApS)
IETF102, Montreal, July 19th, 2018



Reminder: a component of a larger software

* location of the API
- we design an API to a low level codec, not to a FEC Scheme
- the same codec may be used in several FEC Schemes

out of scope for this I-D

ssnnnnnnn FEC scheme INEEEEEEEEN

< codec API >



Reminder: a component of a larger software (2)

* in scope:
= session management
= encoding window management
» set/get/generate coding coefficients
= build repair symbol
- decode with newly recvd src/repair symbol

(sender and receiver)
(sender and receiver)
(sender and receiver)
(sender only)
(receiver only)



Reminder: a component of a larger software (3)

- out of scope (non exhaustive)
U to source symbol mappin

= memory mana
= code rate adj

ngestion control, etc.



Reminder: design goals

* APl compatible with sliding window codes only
v block codes out of scope for the sake of simplicity

* APl compatible with different codes

v codes that differ WRT sliding window management, coding
coefficient generation, Finite Field considered, etc.

* APl compatible with end-to-end and in-network recoding use-cases
v RLNC is in scope, RLC too



API structure

* 4.1. General definitions common to the encoder and decoder

v general definitions, including FEC codepoints (see later)

- 4.2. Coding window functions at an encoder and decoder

v reset/add symbol to/remove from the coding window

- 4.3. Coding coefficients functions at an encoder and decoder

v set/generate/get coding coefficients

 4.4. Encoder functions

v create/release session, callbacks, parameters, build repair

* 4.5. Decoder functions

v create/release session, callbacks, parameters, decode with received source/repair
symbol



FEC codepoints

it's never sent (only the
GF(28), something else? FEC Scheme ID is sent)

- identifier\that fully identifies a codec locally, including parameters
like its Galois Field, or the coding coefficient generator (if several

exist), or specific features
is there an internal coef. generator

e.g. variable density equations or does the application list them?

- several codepoints may exist for the same FEC code, one per codec

v codepoint 1: general purpose codec for code A
v codepoint 2: optimized codec for code A



FEC codepoints (2)

- Example (will be extended beyond RLC codes, of course)

typedef enum {
GA NULL CODEPOINT = O,
/* codepoint for RLC sliding window code, GF(278) and variable
* density (as in FECFRAME FEC Enc. ID XXX). */
GA RLC GF 256 VAR DENSITY CODEPOINT,
/* codepoint for RLC sliding window code, GF(2) and variable
* density (as in FECFRAME FEC Enc. ID YYY). */
GA RLC GF 2 VAR DENSITY CODEPOINT,
/* list here other identifiers for any FEC codec of interest */
} ga codepoint t;



Coding window management

reset the window

add source symbols
» one by one: add source symbol to coding window ()

- orall atatime: add source symbol tab to coding window ()

remove a source symbol

- one at atime: remove source symbol from coding window ()

« €.9., because a sender knows this source symbol has been received

at a sender/encoder, add source symbols progressively, they are
automatically removed and application informed of it with a callback



Coding coefficient management

- the application can submit it’s coding coefficient list (ex. RLNC)
- at an encoder or decoder
- use the set coding coefs tab () function

- useful when coefficients depend on external conditions (e.g., during
recoding at an intermediate node) or are transmitted in headers

- or the codec may feature a generation function (ex. RLC)
- at an encoder or decoder
» use the generate coding coefs (key, ..) function

« ... and the get coding coefs tab () function to retrieve the

coefficients generated to add them to the packet header if needed
10



Encoding

* principles
= make sure coding window is ready

v add new source symbols if any, otherwise leave the coding window
(assumed already intialized)

» generate or submit coding coefficients

- callbuild repair symbol ()each time it's needed, i.e., depending
on the code rate

11



Decoding

« principles for a new repair symbol

= make sure coding window is ready

v reset and specify source symbols mentioned in the packet header
» generate or submit coding coefficients

v as mentioned in the packet header
- call decode with new repair symbol ()

* principles for a new source symbol

- call decode with new source symbol ()

12



Encoder callbacks

- called during important events at an encoder

ga_ status t ga encoder set callback functions (
ga encoder t* enc,
void (*source symbol removed from coding window callback)
vold* context,
uint32 t old symbol esi),
void* context 4 callback);

v each time an (old) source symbol needs to be removed from the
coding window, the application’s callback function is called

o €.g., because the coding windows cannot exceed a certain size
v ... if the application doesn’t care, do not register any function!

13



Decoder callbacks

- called during important events at a decoder

ga_ status t ga decoder set callback functions (
ga decoder t* dec,
void (*source symbol removed from coding window callback) (
void¥* context,
uint32 t old symbol esi),
void* (*decoded source symbol callback) (

void *context,
uint32 t esi),

void (*available source symbol callback) (
void *context,
void *new symbol buf,
uint32 t esi),

void* context 4 callback);

14



What’s next?

- start open-source codec
« absolutely required to challenge this API proposal

* change uint32 t esi
- to something more flexible (what if an ESI doesn't fit into 32-bit words)

 not sure the API is great with hardware codecs (e.g., FPGA)®

- because data transfers are at the symbol level (a symbol may be
significantly smaller than a packet)

- don’'t know how to change it!

15



