
Vincent Roca (Inria) (ed), Jonathan Detchart (ISAE-Supaéro)
Cédric Adjih (Inria), M. Pedersen (Steinwurf ApS)
IETF102, Montreal, July 19th, 2018

Generic API for Sliding Window
FEC Codes
draft-roca-nwcrg-generic-fec-api-02

2

Reminder: a component of a larger software
• location of the API

§ we design an API to a low level codec, not to a FEC Scheme
§ the same codec may be used in several FEC Schemes

<

ß codec API à

low level codec

out of scope for this I-D

FEC scheme

3

Reminder: a component of a larger software (2)
• in scope:

§ session management (sender and receiver)
§ encoding window management (sender and receiver)
§ set/get/generate coding coefficients (sender and receiver)
§ build repair symbol (sender only)
§ decode with newly recvd src/repair symbol (receiver only)

4

Reminder: a component of a larger software (3)
• out of scope (non exhaustive)

§ ADU to source symbol mapping;
§ packet transmission and reception;
§ signaling header creation / parsing;
§ memory management;
§ code rate adjustment, for instance thanks to the knowledge of losses

at a receiver via feedbacks;
§ selective ACK creation and parsing;
§ congestion control, etc.

5

Reminder: design goals
• API compatible with sliding window codes only

ü block codes out of scope for the sake of simplicity

• API compatible with different codes
ü codes that differ WRT sliding window management, coding

coefficient generation, Finite Field considered, etc.

• API compatible with end-to-end and in-network recoding use-cases
ü RLNC is in scope, RLC too

6

API structure
• 4.1. General definitions common to the encoder and decoder

ü general definitions, including FEC codepoints (see later)

• 4.2. Coding window functions at an encoder and decoder
ü reset/add symbol to/remove from the coding window

• 4.3. Coding coefficients functions at an encoder and decoder
ü set/generate/get coding coefficients

• 4.4. Encoder functions
ü create/release session, callbacks, parameters, build repair

• 4.5. Decoder functions
ü create/release session, callbacks, parameters, decode with received source/repair

symbol

7

FEC codepoints

• identifier that fully identifies a codec locally, including parameters
like its Galois Field, or the coding coefficient generator (if several
exist), or specific features

• several codepoints may exist for the same FEC code, one per codec
ü codepoint 1: general purpose codec for code A
ü codepoint 2: optimized codec for code A

it’s never sent (only the
FEC Scheme ID is sent)

e.g. variable density equations

GF(28), something else?

is there an internal coef. generator
or does the application list them?

8

FEC codepoints (2)
• Example (will be extended beyond RLC codes, of course)

typedef enum {
GA_NULL_CODEPOINT = 0,
/* codepoint for RLC sliding window code, GF(2^8) and variable
* density (as in FECFRAME FEC Enc. ID XXX). */

GA_RLC_GF_256_VAR_DENSITY_CODEPOINT,
/* codepoint for RLC sliding window code, GF(2) and variable
* density (as in FECFRAME FEC Enc. ID YYY). */

GA_RLC_GF_2_VAR_DENSITY_CODEPOINT,
/* list here other identifiers for any FEC codec of interest */

} ga_codepoint_t;

9

Coding window management
• reset the window
• add source symbols

§ one by one: add_source_symbol_to_coding_window()
§ or all at a time: add_source_symbol_tab_to_coding_window()

• remove a source symbol
§ one at a time: remove_source_symbol_from_coding_window()
§ e.g., because a sender knows this source symbol has been received

• at a sender/encoder, add source symbols progressively, they are
automatically removed and application informed of it with a callback

10

Coding coefficient management
• the application can submit it’s coding coefficient list (ex. RLNC)

§ at an encoder or decoder
§ use the set_coding_coefs_tab() function
§ useful when coefficients depend on external conditions (e.g., during

recoding at an intermediate node) or are transmitted in headers

• or the codec may feature a generation function (ex. RLC)
§ at an encoder or decoder
§ use the generate_coding_coefs(key, …) function
§ … and the get_coding_coefs_tab() function to retrieve the

coefficients generated to add them to the packet header if needed

11

Encoding
• principles

§ make sure coding window is ready
ü add new source symbols if any, otherwise leave the coding window

(assumed already intialized)
§ generate or submit coding coefficients
§ call build_repair_symbol()each time it’s needed, i.e., depending

on the code rate

12

Decoding
• principles for a new repair symbol

§ make sure coding window is ready
ü reset and specify source symbols mentioned in the packet header

§ generate or submit coding coefficients
ü as mentioned in the packet header

§ call decode_with_new_repair_symbol()

• principles for a new source symbol
§ call decode_with_new_source_symbol()

13

Encoder callbacks
• called during important events at an encoder

ü each time an (old) source symbol needs to be removed from the
coding window, the application’s callback function is called
o e.g., because the coding windows cannot exceed a certain size

ü … if the application doesn’t care, do not register any function!

ga_status_t ga_encoder_set_callback_functions (
ga_encoder_t* enc,
void (*source_symbol_removed_from_coding_window_callback) (

void* context,
uint32_t old_symbol_esi),

void* context_4_callback);

14

Decoder callbacks
• called during important events at a decoder
ga_status_t ga_decoder_set_callback_functions (

ga_decoder_t* dec,
void (*source_symbol_removed_from_coding_window_callback) (

void* context,
uint32_t old_symbol_esi),

void* (*decoded_source_symbol_callback) (
void *context,
uint32_t esi),

void (*available_source_symbol_callback) (
void *context,
void *new_symbol_buf,
uint32_t esi),

void* context_4_callback);

15

What’s next?
• start open-source codec

§ absolutely required to challenge this API proposal

• change uint32_t esi
§ to something more flexible (what if an ESI doesn’t fit into 32-bit words)

• not sure the API is great with hardware codecs (e.g., FPGA)L
§ because data transfers are at the symbol level (a symbol may be

significantly smaller than a packet)
§ don’t know how to change it!

