Lessons learned from “RLC FEC
Scheme for FECFRAME”
specification at TSVWG: PRNG

Vincent Roca, Inria PRIVATICS, vincent.roca@inria.fr Ve
[ETF102, Montreal, July 19, 2018 Y )7 B



Park-Miller PRNG (pseudo random number gen.)

- essential even if other solutions exist
* |-D used to rely on Park Miller Linear Congruential PRNG

* seed the sequence
* each PR number Ij+1 1s computed with:

Ij+1 = A * Ij (modulo M) with A=16807, M=23!-1
* scale 1t between 0 and maxv — 1 (inclusive)

* not an issue with RFC 5170 (LDPC-staircase specs.)

- because:

v we generate many PR Numbers from the same seed
v we scale with large maxv values



Park-Miller PRNG (2)

- yet it’s totally inappropriate with RLC

« ex. produce two repairs from the same encoding window
v application chooses seeds in sequence (s, s+1, ...)

o the obvious strategy (that many implementations will use)

- when scaling to [0; 2595]

first source symbol
of encoding window
is not/badly
protected ®

seed=3
M

seed=1
seed=2

A
\VARY

\
cloloNe

r

]

seed=10000 => 19
seed=10001 => 19
seed=10002 => 19

33
6’/
100
134

96
129
163

192
130
68

13
206
143

116
233

95
212

1277
244
106

135
16
152
33

171
52
188

coefs. for 18t repair
coefs. for 2"d repair



Park-Miller PRNG (3)
e [...]

- even worse when scaling to [0; 15] (needed for sparse equations)
v high probability of duplicated coefficients across repair symbols

- conclusion: if we want to let applications freely select seeds, P-M
PRNG is not the right choice



TinyMT32 PRNG

* Tiny Mersenne Twister, 32-bit version
- compact version of the renown/widely used Mersenne Twister PRNG
v see https:/len.wikipedia.org/wiki/Mersenne Twister)

= provable quality

- comes with a reference C implementation

v lightly edited version added in appendix to draft-ietf-tsvwg-ric-fec-
scheme-05

- solved all problems
= question: performance impacts?


https://en.wikipedia.org/wiki/Mersenne_Twister
https://tools.ietf.org/html/draft-ietf-tsvwg-rlc-fec-scheme-05

TinyMT32 PRNG (2)

« Compulab ARM Cortex- A15@1.5GHz CPU

#seeds=1000000 #coefs per seed=20
P-M: duration=6.646820
TinyMT32: duration=3.477315

tiny / P-M = 0.523 =1 / 1.912

&
@
‘dﬁﬁ #seeds=1000000 #coefs per seed=100
N P-M: duration=32.957823
e«@ TinyMT32: duration=14.058373
%6\0‘ tiny / P-M = 0.426 = 1 / 2.347
<D
4§§§ #seeds=1 #coefs per seed=1000000

P-M: duration=0.33490606
TinyMT32 duration=0.134338
tiny / P-M = 0.400 =1 / 2.5



TinyMT32 PRNG (3)

- sometimes it’s the opposite: MacBookPro 15p
« here TinyMT32 is upto 1.7 times slower than Park-Miller PRNG
« ... probably a sub-optimal instruction set usage/compiler problem
- we didn’t investigate to find exact reason

* in any case initialization is a bit long, but production of PR numbers
with TinyMT32 is fast ©



TinyMT32 PRNG (4)

* NB: we fixed 3 internal parameters:
o TINYMT32 MAT1 _PARAM 0x8f7011ee
o TINYMT32 MATZ2 PARAM Oxfc78ff1f
o TINYMT32_ TMAT_ PARAM 0x3793fdff

v those are good official values, but many other triples could be used,
leading to different PR number sequences

- when published as RFC, this modern PRNG will be easily reusable
in other documents



