
Vincent Roca, Inria PRIVATICS, vincent.roca@inria.fr
IETF102, Montreal, July 19th, 2018
Vincent Roca, Inria PRIVATICS, vincent.roca@inria.fr
IETF102, Montreal, July 19th, 2018

Lessons learned from “RLC FEC
Scheme for FECFRAME”
specification at TSVWG: PRNG

2

Park-Miller PRNG (pseudo random number gen.)
• essential even if other solutions exist
• I-D used to rely on Park Miller Linear Congruential PRNG

• not an issue with RFC 5170 (LDPC-staircase specs.)
§ because:

ü we generate many PR Numbers from the same seed
ü we scale with large maxv values

• seed the sequence
• each PR number Ij+1 is computed with:

Ij+1 = A * Ij (modulo M) with A=16807, M=231-1
• scale it between 0 and maxv – 1 (inclusive)

3

Park-Miller PRNG (2)
• yet it’s totally inappropriate with RLC

§ ex. produce two repairs from the same encoding window
ü application chooses seeds in sequence (s, s+1, …)

o the obvious strategy (that many implementations will use)

§ when scaling to [0; 255]

seed=1 => 0 33 192 116 135
seed=2 => 0 67 130 233 16
seed=3 => 0 100 68 95 152
seed=4 => 0 134 5 212 33
[…]
seed=10000 => 19 96 13 127 171
seed=10001 => 19 129 206 244 52
seed=10002 => 19 163 143 106 188

first source symbol
of encoding window

is not/badly
protected L

coefs. for 1st repair
coefs. for 2nd repair
…

4

Park-Miller PRNG (3)
• […]

§ even worse when scaling to [0; 15] (needed for sparse equations)
ü high probability of duplicated coefficients across repair symbols

• conclusion: if we want to let applications freely select seeds, P-M
PRNG is not the right choice

5

TinyMT32 PRNG
• Tiny Mersenne Twister, 32-bit version

§ compact version of the renown/widely used Mersenne Twister PRNG
ü see https://en.wikipedia.org/wiki/Mersenne_Twister)

§ provable quality
§ comes with a reference C implementation

ü lightly edited version added in appendix to draft-ietf-tsvwg-rlc-fec-
scheme-05

§ solved all problems
§ question: performance impacts?

https://en.wikipedia.org/wiki/Mersenne_Twister
https://tools.ietf.org/html/draft-ietf-tsvwg-rlc-fec-scheme-05

6

TinyMT32 PRNG (2)
• Compulab ARM Cortex- A15@1.5GHz CPU

#seeds=1000000 #coefs per seed=20
P-M: duration=6.646820
TinyMT32: duration=3.477315

tiny / P-M = 0.523 = 1 / 1.912

#seeds=1000000 #coefs per seed=100
P-M: duration=32.957823
TinyMT32: duration=14.058373

tiny / P-M = 0.426 = 1 / 2.347

#seeds=1 #coefs per seed=1000000
P-M: duration=0.334906
TinyMT32 duration=0.134338

tiny / P-M = 0.400 = 1 / 2.5

TinyM
T32 m

ore th
an 2 tim

es fa
ste

r

7

TinyMT32 PRNG (3)
• sometimes it’s the opposite: MacBookPro 15p

§ here TinyMT32 is upto 1.7 times slower than Park-Miller PRNG

§ … probably a sub-optimal instruction set usage/compiler problem

§ we didn’t investigate to find exact reason

• in any case initialization is a bit long, but production of PR numbers
with TinyMT32 is fast J

8

TinyMT32 PRNG (4)
• NB: we fixed 3 internal parameters:

o TINYMT32_MAT1_PARAM 0x8f7011ee
o TINYMT32_MAT2_PARAM 0xfc78ff1f
o TINYMT32_TMAT_PARAM 0x3793fdff

ü those are good official values, but many other triples could be used,
leading to different PR number sequences

• when published as RFC, this modern PRNG will be easily reusable
in other documents

