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Park-Miller PRNG (pseudo random number gen.)

- essential even if other solutions exist
* |-D used to rely on Park Miller Linear Congruential PRNG

* seed the sequence
* each PR number Ij+1 1s computed with:

Ij+1 = A * Ij (modulo M) with A=16807, M=23!-1
* scale 1t between 0 and maxv — 1 (inclusive)

* not an issue with RFC 5170 (LDPC-staircase specs.)

- because:

v we generate many PR Numbers from the same seed
v we scale with large maxv values



Park-Miller PRNG (2)

- yet it’s totally inappropriate with RLC

« ex. produce two repairs from the same encoding window
v application chooses seeds in sequence (s, s+1, ...)

o the obvious strategy (that many implementations will use)

- when scaling to [0; 2595]
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Park-Miller PRNG (3)
e [...]

- even worse when scaling to [0; 15] (needed for sparse equations)
v high probability of duplicated coefficients across repair symbols

- conclusion: if we want to let applications freely select seeds, P-M
PRNG is not the right choice



TinyMT32 PRNG

* Tiny Mersenne Twister, 32-bit version
- compact version of the renown/widely used Mersenne Twister PRNG
v see https:/len.wikipedia.org/wiki/Mersenne Twister)

= provable quality

- comes with a reference C implementation

v lightly edited version added in appendix to draft-ietf-tsvwg-ric-fec-
scheme-05

- solved all problems
= question: performance impacts?


https://en.wikipedia.org/wiki/Mersenne_Twister
https://tools.ietf.org/html/draft-ietf-tsvwg-rlc-fec-scheme-05

TinyMT32 PRNG (2)

« Compulab ARM Cortex- A15@1.5GHz CPU

#seeds=1000000 #coefs per seed=20
P-M: duration=6.646820
TinyMT32: duration=3.477315

tiny / P-M = 0.523 =1 / 1.912

&
@
‘dﬁﬁ #seeds=1000000 #coefs per seed=100
N P-M: duration=32.957823
e«@ TinyMT32: duration=14.058373
%6\0‘ tiny / P-M = 0.426 = 1 / 2.347
<D
4§§§ #seeds=1 #coefs per seed=1000000

P-M: duration=0.33490606
TinyMT32 duration=0.134338
tiny / P-M = 0.400 =1 / 2.5



TinyMT32 PRNG (3)

- sometimes it’s the opposite: MacBookPro 15p
« here TinyMT32 is upto 1.7 times slower than Park-Miller PRNG
« ... probably a sub-optimal instruction set usage/compiler problem
- we didn’t investigate to find exact reason

* in any case initialization is a bit long, but production of PR numbers
with TinyMT32 is fast ©



TinyMT32 PRNG (4)

* NB: we fixed 3 internal parameters:
o TINYMT32 MAT1 _PARAM 0x8f7011ee
o TINYMT32 MATZ2 PARAM Oxfc78ff1f
o TINYMT32_ TMAT_ PARAM 0x3793fdff

v those are good official values, but many other triples could be used,
leading to different PR number sequences

- when published as RFC, this modern PRNG will be easily reusable
in other documents



