Coding for QUIC — RLC for QUIC

draft-swett-nwcrg-coding-for-quic-01
draft-roca-nwcrg-ric-fec-scheme-for-quic-00

lan Swett, Marie-José Montpetit, Vincent Roca
IETF102, Montreal, July 19th, 2018

Status

* most of the ideas and techniques should be in the two I-Ds

« general considerations

v https://datatracker.ietf.org/doc/draft-swett-nwcrg-coding-for-quic/

= application to RLC sliding window codes

v https://datatracker.ietf.org/doc/draft-roca-nwcrq-ric-fec-scheme-for-quic/

v RLC as the first example, others to add

https://datatracker.ietf.org/doc/draft-swett-nwcrg-coding-for-quic/
https://datatracker.ietf.org/doc/draft-roca-nwcrg-rlc-fec-scheme-for-quic/

Main principles

FEC protection at the STREAM level

FEC negotiation

frame data to source symbol mapping
transmission in STREAM and REPAIR Frames

hoODdb-=

5. ... FEC protection across several STREAMs

1- FEC protection at the STREAM level

 key architectural principle
- FEC protection within a single STREAM of a QUIC session

v protect flow(s) that need it within the QUIC session
v do not leverage on the QUIC “packet number” field

e open question
- FEC protection across two or more STREAMs of the same QUIC
session?

v seems feasible... but it adds more complexity!
v is it worth?

2- FEC Scheme negotiation

- an endpoint initiates negotiation and lists supported FEC Schemes
* the other side selects the one preferred
- static parameters are always piggybacked

- meant to carry FEC Scheme configuration information (next slide)

QUIC sender QUIC receiver

supported fec scheme 32b{FEC Encoding ID1 | other}
supported fec scheme 64b{FEC Encoding IDZ2 | other}

chooses FEC Scheme 1

supported fec scheme 32b{FEC Encoding ID1 | other}

FEC Scheme negotiation: ex. of RLC (2)

* RLC Configuration Information
- FEC Encoding ID (8 bits):
o IANA registered identifier for RLC for QUIC
- Encoding symbol size, E (in bytes) (16 bits):
o Size of any source/repair symbol

0 1 2 3

0123456789 01234567890123456789°01
t—t—t—t—F—t—F—t—t—F—t—F—F—t—F—F—F—F—t—F—t—F—F—t—F—F—F—F—+—F—+—F+—+
| FEC Enc. ID | Encoding Symbol size | 0 |
+—+—+—+—+[+—+

identifies the FEC Scheme

6

FEC Scheme negotiation (3)

e open question
- is it worth selecting several FEC Schemes within the same QUIC
session?

v FEC codes have different features: sliding window for real-time,
block code for bulk non-real-time content

v but adds complexity (e.g., need to further identify which FEC Scheme
is used in each STREAM)

3- From frame data to source symbols

* mapping source symbols to frame data (input)

= application/frame data is of variable size but source symbols are
fixed size

= solution: mapping through a table

< -E- > << -E- > << -F- > << -E- >

data in sequence — |< —- Fgame 1 —- p src symbols 0,1,2,3
(no gap)
D ===== ><|--- Frame 3 -- >< -| src symbols 4,5,6,7
f—————— +———t-—- = +
| Frame 4 - PB< -F5- >| src symbols 8,9,10
s SIS i === (incomplete)

(2) segment table into
8 E byte long symbols

From application data to source symbols (2)

 on the choice of E (i.e., the symbol size)

= any value possible, as long as a frame containing a repair symbol can
fit into a QUIC packet

= source symbol can straddle several STREAM data frames
v bad for reliability but almost unavoidable

- small source symbols reduce risk
v but increase complexity

= find an appropriate balance!

No need for a separate Encoding Symbol ID (ESI)

- ESI are traditionally symbol sequence numbers
= €.9., to identify symbols within the encoding window or block

 useless here because:

= source data

v QUIC Offset field always enable to identify frame data position within
the frame/symbol mapping table

= repair data
v do not need anything

- seems anecdotic but in practice it’s a key point!

10

4- Transmission in STREAM and REPAIR Frames

* no change for source data flow ©

= fully backward compatible
v no need for a new frame type
v any legacy QUIC receiver can process source data

e carried in dedicated REPAIR Frames
- defined as an "extension frame”

- reuse the same REPAIR frame type for all FEC Schemes, even if the
format changes

- reuses the same STREAM ID (it's for the same data flow)

11

Tx in STREAM and REPAIR Frames: ex. of RLC (2)

« REPAIR format with RLC

0 1 2 3
0123456789 0123456789012345¢06738°9°01
+—+—-+-+-F+—-4—-+—-+-+—-F—-+—-—+—-+—-F+—-F—-+—-—+—-F+—F—-F+—+—-F+—F—F—F+—-t+—F—F—F+—+—+—+—+
| Stream ID (1) ..
+—+—-+-+-F+—-4—-+—-+-+—-F—-+—-—+—-+—-F+—-F—-+—-—+—-F+—F—-F+—+—-F+—F—F—F+—-t+—F—F—F+—+—+—+—+

| [Offset of First Source Symbol in EW (i)]‘\\.togeﬂmw

S R e S s e e e e [oY (TaPN IO

| [Length (1)]
the PRNG
seed

| coding
R e e e L e e e e Rt sl st 0 /12 Py

— Repair Key | DT INSS (# src symb in €
——t—t—F—F—t—F—F—t—t—F—F—F—F—F -+ Rttt —F—F—F—F—F—+—+—F+—+—+
| Stream Data c ..
+—t—t—F—t—t—F—F—F—F—F—F—t—F—F—F—F—F -+ -+ -\t -t —F—F—F—F—F—F+—+—F+—+—+
internal RLC density param.
12

Management of silent periods and end of stream

- classical difficulty

« last source symbol may not be filled in case of a silence!

- potential solution(?)
= timer based

= upon time-out, fall back to the alternative retransmission based loss

recovery mechanism for the bytes of the last incomplete source
symbol

= ... heeds more thoughts/experiments

13

