A Framework for Computed Multicast applied to SR-MPLS

draft-allan-pim-sr-mpls-multicast-framework-00

Dave Allan,
Jeff Tantsura,
Ian Duncan
IETF102
What is the draft about?

- Using computation to determine the routing of multicast segments in an MPLS based SR network, and how tunneling using node-SIDs can be used as part of multicast tree construction
 - Either distributed or centralized control models

- The draft describes
 - Terminology
 - Overall approach
 - Loose and Explicitly Routed multicast distribution trees
 - Algorithm
 - FIB installation procedures
Motivations/1

Reduce state!

• Multicast state can rapidly dwarf unicast state

• A quick comparison:
 – ND = network diameter
 – T = total number of multicast trees
 – L = average number of leaves per tree
 – For “flat” multicast trees (e.g. PIM or mLDP)
 • State \(\sim T \times f(ND \times L) \)
 – With the approach described in the draft
 • State = T \times L \times 2 \ (worst case)
Motivations/2

• Leverage the MPLS dataplane and SR as much as possible
 – Use the SR-MPLS data plane in ways PIM or mLDP “like” approaches cannot
 – Implement multicast where BIER not technically or economically feasible
Approach

• The draft describes an architecture whereby multicast trees are a hybrid of roots, leaves, and replication points interconnected with tunnels, with the routing of the tree determined entirely from information in the IGP

• This provides multiple benefits
 – Minimized messaging the converge the network
 – Reduced dataplane state
 – Reduces bandwidth requirements vs. straight IGP derived trees (PIM, mLDP, BIER)
 – Unicast convergence provides recovery for most failures
An example tree

Root – node 1
Leaves – nodes 4, 8, 11, 13
Replication points – nodes 5 & 12

Root

Leaves

Multicast SID ‘x’

Node SID ‘5’

Node SID ‘11’

Node SID ‘13’
Required tree attributes

• The use of tunnels requires a minimum cost or near minimum cost multicast tree in order to be ECMP “friendly”
 – No duplication of packets on any link \(\rightarrow\) no logical multicast

• An ECMP “friendly” tree construction algorithm is in the draft

• Serendipitously, it is also the source of improvements in bandwidth efficiency
 – It shifts replication points closer to the leaves
Loose and Explicitly Routed Trees

• A loose tree is composed of a single multicast segment (with a SID), where only the root and the leaves have been specified

• An explicitly routed tree is composed of a concatenation of multicast segments where the roots, waypoints and leaves have been specified
 – The routing of individual segments is still computed
 – The routing of an MDT can then be specified to an arbitrary level of granularity
Changes from the last time around

• This has been presented before
 – Last time was IETF 97

• Current draft
 – Updated terminology to align with current state of SR-MPLS
 – Editorial improvements
 – Motivations added
 – Improvements to the algorithm description
 – Offers some thoughts on SR-Controller operation
Next Steps

• Collect feedback
• Planned updates to the draft
 – Improvements to FIB installation procedures
 – Bring the draft up to date w.r.t. “MPLS friendliness”
• We will bring forth in future drafts:
 – The required IGP extensions
 – Interworking with existing mechanisms
• We will pursue standards track
 – So looking for PIM WG adoption
Questions?
Backup

• Existing implementations
 – SPRING charter focuses on no DP changes
• This does not require a DP change
 – Existing silicon can replicate into tunnels
 – ECMP at a replication node can be a control plane function
 • The action for a multicast SID is to replicate a packet to a set of interfaces, and there is a stack manipulation to be performed for each interface
 – This maps to a continue and push
 • The ECMP aspect is what interface is selected for the particular tree from the set of possible next hops for the node SID
 – In RFC 3031 terms an ILM → {NHLFE1, NHLFE2, etc.}