
HTTP/QUIC
IETF 102

Notable Changes since London

2

Flags defined inside PRIORITY,
not in every frame type.

3

Placeholders in the PRIORITY Tree

● Server setting decides how many placeholders client is allowed to use

● PRIORITY frame indicates type of prioritized element and type of dependency

○ Request

○ Push

○ Placeholder

○ Root of tree

■ (0 is a valid request stream now!)

● Permits more aggressive pruning

4

Aggressive Pruning Active = open or recently closed

Inactive = closed >1 RTT ago

P

I I

IA

A

5

Active = open or recently closed

Inactive = closed >1 RTT ago

P

I I

IA

A

P

I

A

A

Aggressive Pruning

6

Active = open or recently closed

Inactive = closed >1 RTT ago

P

I I

IA

A

P

I

A

A

P

A

A

Aggressive Pruning

7

Self-Describing Unidirectional Streams

● Begin with a type byte
○ If you understand it, keep reading. Four types defined now:

■ Control

■ QPACK Encoder

■ QPACK Decoder

■ Push

○ If not, stop reading the stream (may trigger STOP_SENDING)

● Extensible, similar to frame types
○ Define frame if data is always a single unit
○ Define stream type if data can develop over time

Server Bidi

Client Bidi

Server Uni

Client Uni

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

8

Self-Describing Unidirectional Streams

● In Kista, hum was roughly split between “do this” and “not
sure yet”

● Follow-up discussion on list was largely positive, but
acknowledged drawbacks:

○ Debugging without tools is somewhat harder
■ …in an encrypted protocol you can’t debug without tools anyway

○ If data arrives out of order, stream can be open with an unknown
type
■ …which also makes the out-of-order data unusable, even if you support that

Server Bidi

Client Bidi

Server Uni

Client Uni

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

9

Philosophical Question: How Separate Is Push?

● Push streams are now just another unidirectional stream type
○ You still have to account for the QPACK frames on them, but only if you allow

them to be created in the first place

● MAX_PUSH_ID frames aren’t needed if either peer doesn’t support push
○ If MAX_PUSH_ID remains 0, no PUSH_PROMISE frames for QPACK

● PRIORITY explicitly supports Push IDs as a prioritized/dependent object
type

● SETTINGS_ENABLE_PUSH was removed in favor of MAX_PUSH_ID frames
○ Should we bring it back as a Server Push “master switch”?

10

1
All other HTTP/QUIC issues are editorial,

parked, or post-v1!

11

Previous connection

SETTING_HEADER_TABLE_SIZE:

64000

0-RTT and SETTINGS

● QUIC:
If 0-RTT data is accepted

by the server, the server

MUST NOT reduce any

limits or alter any

values that might be

violated by the client

with its 0-RTT data.

● HTTP/QUIC:
Servers MAY continue

processing data from

clients which exceed its

current configuration

during the initial

flight. In this case, the

client MUST apply the new

settings immediately upon

receipt.

SETTING_HEADER_TABLE_SIZE:

4096

QPACK

Table size:56KB

Insert: (cookie,32KB blob)

Insert: other stuff

HEADERS

From table, using:

• cookie

• :authority

• user-agent

Uhh….?

0-RTT

1-RTT

12

Proposal: Match Transport

Status quo: Tolerate client overruns

● Client has to deal with reduction of

setting values after beginning to

send data
○ …and there’s no synchronization

provided by the protocol

● Server has to recover old settings in

order to differentiate between stale

and malicious clients

0-RTT implies same or better

● Server has to involve HTTP in the

decision of whether to accept 0-RTT
○ …which means recovering the old

settings

● Each setting needs to define what

constitutes “reduce or alter” if it’s

not obvious

● Settings can only increase, not

decrease

13

Now implement and find
the rest!

14

