HTTP/QUIC

IETF 102



Notable Changes since London






Placeholders in the PRIORITY Tree

e Server setting decides how many placeholders client is;allowed to use

e PRIORITY frame indicates type of prioritized element and type of dependency
o Request
o Push
o Placeholder

o Root of tree

m (Oisavalid request stream now!)

e Permits more aggressive pruning

Qauic ]



Aggressive Pru ning Active = open or recently closed

Inactive = closed >1 RTT ago




Aggressive Pru ning Active = open or recently closed

Inactive = closed >1 RTT ago




Aggressive Pru ning Active = open or recently closed

Inactive = closed >1 RTT ago




Server Bidi Server Uni

Self-Describing Unidirectional Streams

Client Bidi Client Uni

e Begin with a type byte
o If you understand it, keep reading. Four types defined now:

Control
QPACK Encoder
QPACK Decoder

|
|
|
m Push

o If not, stop reading the stream (may trigger STOP_SENDING)

e Extensible, similar to frame types
o Define frame if data is always a single unit
o Define stream type if data can develop over time




Server Bidi Server Uni

Self-Describing Unidirectional Streams

Client Bidi Client Uni

e In Kista, hum was roughly split between “do this” and “not
sure yet”

e Follow-up discussion on list was largely positive, but

acknowledged drawbacks:
o Debugging without tools is somewhat harder

m ..inan encrypted protocol you can’t debug without tools anyway
o If data arrives out of order, stream can be open with an unknown
type

m ..which also makes the out-of-order data unusable, even if you support that




Philosophical Question: How Separate Is Push?

e Push streams are now just another unidirectional stream type
o You still have to account for the QPACK frames on them, but only if you allow
them to be created in the first place

e MAX PUSH _ID frames aren’t needed if either peer doesn’t support push
o If MAX_PUSH_ID remains 0, no PUSH_PROMISE frames for QPACK

e PRIORITY explicitly supports Push IDs as a prioritized/dependent object
type
e SETTINGS ENABLE PUSH was removed in favor of MAX_PUSH ID frames

o Should we bring it back as a Server Push “master switch”?

@aun: 10



1

All other HTTP/QUIC issues are editorial,
parked, or post-v1!

uvwo
un\eSS \JO S\\dQSy
Qauic




O-RTT and SETTINGS

QUIC:

If O-RTT data 1s accepted
by the server, the server
MUST NOT reduce any
limits or alter any
values that might be
violated by the client
with its O0-RTT data.

HTTP/QUIC:

Servers MAY continue
processing data from
clients which exceed its
current configuration
during the initial
flight. In this case, the
client MUST apply the new
settings 1mmediately upon
receipt.

Qauic

Previous connection

QPACK
Table size:56KB

Insert: (cookie,32KB blob)
Insert: other stuff

HEADERS
From table, using:
« cookie
« authority

* user-agent

1-RTT

12




Proposal: Match Transport

Status quo: Tolerate client overruns

® Client has to deal with reduction of
setting values after beginning to

send data

O ...and there’s no synchronization
provided by the protocol

e Server has to recover old settings in
order to differentiate between stale
and malicious clients

Qauic

O0-RTT implies same or better

® Server has to involve HTTP in the

decision of whether to accept O-RTT
O ..which means recovering the old
settings

® Each setting needs to define what
constitutes “reduce or alter” if it’s
not obvious

e Settings can only increase, not
decrease

13



Now implement and find
the rest!



