Retry Woes

QUIC WG, IETF 102, July 2018
Martin Thomson

Retry Characteristics

Purpose: stateless client address validation
Design: token-based
Strengths: simplicity

Weaknesses: spoofing, format, looping, O-RTT, coalescing

Qauic

Retry Overview

Client sends Initial

Server sends Retry with a token

Client sends another Initial with the token

Retry includes the (random) connection ID from the Initial

Retry can be sent multiple times (clients MUST permit 3)

_Yaulc

Oxfe DCIL/SCIL | DCID.. | SCID...
Format Length (i) | PN PN 22222 | PN 22227

PN 22?22 | ODCIL ODCID ... | Token ..
-13 is a mess

Retry isn't encrypted, but it (apparently) includes a packet
number, which is (7) encrypted

Proposal: Don't include a length or packet number field

Oxfe DCIL/SCIL | DCID ... SCID ...
ODCIL ODCID ... | Token ...

New weakness: can't coalesce Retry

New proposal: don't worry about that

Qauvuic

Looping

Clients accept multiple Retry packets

There is no reliable way to distinguish Retry from different
flights of messages

If a client retransmits the Initial, they might get multiple
Retry packets

If the Retry from one iteration is reordered relative to
another iteration, the handshake can regress - and might fail

NNQuic

Proposed Looping Fix

A non-terminal server MUST provide a new connection ID
A non-terminal server is one that might send another Retry

This means that every Retry will have a unique “Original
Destination Connection ID" field

Initial Initial Initial Initial
— 1 (=) (D=1) 0= &3 (D=3)
Client v
Server L
Retry Retry Retry Initial
(0=1,5=2) (0=1,5=2) (0=2,5=3) (S=4)

Qauic

Spoofing

An attacker can spoof a Retry if they can see the Initial

This can cause connection failures either from too many
retries, or invalid tokens

An attacker can also alter the connection ID

For instance, a MitM attacker can provide a Retry with its
choice of connection ID and strip the token from the
subsequent Initial

Nauilc

Spoofing Proposal

Firstly, we don't have to do anything because we don't
promise any protection for an attacker with these
capabilities during the handshake, but...

If you see an Initial from a server, you can use it

... even if you have sent an Initial in reaction to a Retry

_Yaulc

O-RTT and Retry

Question: can a client re-attempt O-RTT after Retry
Proposal: Yes. Also after version negotiation
Rationale: don't prohibit without strong justification
Catch: Need to resend O-RTT packets

..with new packet numbers

_Yaulc

O-RTT and Retry

Q: Can a server send Retry if it receives a O-RTT packet?
Draft currently prohibits this
Support for doing so is weak

The case for prohibition is probably equally weak

Proposat——AH—F—
Proposal: SHOULD NOT rather than MUST NOT

Rationale: don't prohibit without better justification

Nauic o

