Routing in Fat Trees (RIFT) Update
draft-rift-rift-02

IETF 102, 7/18, Montreal

The RIFT authors’ brotherhood
Update from -05, -01 and -02

• Last version presented in London –private-04 or so
• We went to -05, rift-00, -01 and -02 in meantime and -03 is under works already with tons hackathon input and last completeness issues
• Interim was held around -00 with some -01 topics
 • This preso includes it if you missed but without the “running code” walk-throughs and detailed drill-downs
 • You can always watch the recording
• This will be a longish preso with tons never-seen-before material, settle down comfortably
Update, Green is Done, Red in -03/-04

- Fabric Bandwidth Balancing
- Optimal Flooding Reduction and Load Balancing
- BFD Interactions
- LIE FSM
- Mobility
- ZTP FSM
- Security Envelope
- HAL move to BAL
- Multi-Plane Super-Spine
- Flooding FSM
Mini Fabric Used in This Presentation

- Configuration
 - Only Superspines MUST be set
 - One Leaf Fixed
 - One Prefix
LIE Flow: Warm-Up, Node 111 Spine 21

three way LIE (without ZTP)

111

1-WAY

{no neighbor}

2-WAY

{21}

21

1-WAY

{no neighbor}

2-WAY

3-WAY
ZTP: Warm-Up
ZTP FSM: Spec’ed Out in Detail

Enter

UpdatingClients

| NeighborOffer |
| WithdrawNeighborOffer |
| ComputationDone |

HoldingDown

| NeighborOffer |
| ShortTic |
| BetterHAL |
| BetterHAT |
| LostHAL |
| LostHAT |
| ChangeLocalLeafIndications |
| ChangeLocalConfiguredLevel |
| HoldDownExpired |
| LostHAL |

ComputeBestOffer

| NeighborOffer |
| WithdrawNeighborOffer |
| BetterHAL |
| BetterHAT |
| LostHAL |
| LostHAT |
| ChangeLocalLeafIndications |
| ChangeLocalConfiguredLevel |

RIFT-02 Update, IETF 102
Optimal Flood Reduction & Load Balancing

A \rightarrow \{3, 4\}
B \rightarrow \{1, 2, 4\}
C \rightarrow \{1, 2, 3\}
D \rightarrow \{1, 2\}

EQ \rightarrow \{B, C\}, \{A, D\}

A \rightarrow A, B, D
B \rightarrow A, B, D
C \rightarrow A, B, D
D \rightarrow B, C, D

\alpha \rightarrow [B, C, A, D]
\beta \rightarrow [B, C, D, A]
\gamma \rightarrow [B, C, A, D]
\delta \rightarrow [B, C, C, D]

HASH & FISHER-YATES
Optimal Flood Reduction & Load Balancing Continued

• Vastly superior to previous solution since operational under any cabling failure conditions
• For 5-stage folded this is best solution possible
• For 7-stage (recursive application) this is close to optimal
• Completely stable independently whether nodes implement it or not and whether they use precisely same algorithm or not
• No implementation numbers yet but should be better than suggested, current solution
Fabric Bandwidth Balancing

- RIFT calculates the amount of northbound bandwidth available towards a node compared to other nodes at the same level and adjusts the default route distance accordingly to allow for the lower level to have different weights on load balancing.

- **BAD_N**: Bandwidth Adjusted Metric to N
- **L_N_u**: as sum of the bandwidth available from L to N
- **N_u**: as sum of the uplink bandwidth available on N
- **T_N_u**: L_N_u + N_u
- **M_N_u**: log₂(next_power_2(T_N_u))
- **BAD_N**: D * (1 + maximum_of_all(M_N_u) - M_N_u)
Secure, Optimized RIFT Information Element Envelope Suggestion

- Avoids Problems we found over years with traditional link-state protocols when securing them
- Maximizes Flooding Speed (No Re-Serialization, No Lifetime protection)
- Security Fingerprint Does Not Get Affected by TIE LifeTime Changes
- Serialized Object Keeps Its Fingerprint and Does Not Need Re-Serialization on LifeTime Field Change by Every Node
- Provides Optimal Security (Lifetime Attacks Are Solved By RFC7987)
 - In object when originated we add optional, secure, absolute timestamp
 - Lie Nonces Are Protected by Fingerprint Against Replays, Reflect Neighbors’ Nonce, could be kept in the LIE Packet Given They Change All the Time anyway but there maybe other uses
 - Only Node with Private Key Can Generate the Fingerprint (Either for LIEs One-Hop or for TIEs Providing Origin Validation and Integrity)
Mobility Support

• Optional clock attribute on prefix
• If clock not present, anycast
• If present, always better than none
• If both present, RFC5905 or better on fabric assumed
 • If IEEE802_1 less than 200msec diff, transactionid (TID) if present tie-breaks
 • Otherwise timestamp compares
• TIDs are coming from draft-ietf-6lo-rfc6775-update or similar mechanisms

```c
struct PrefixAttributes {
    ...
    /** optional monotonic clock for mobile addresses */
    4: optional PrefixSequenceType    monotonic_clock;
};

struct PrefixSequenceType {
    1: required IEEE802_1ASTimeStampType    timestamp;
    2: optional PrefixTransactionIDType    transactionid;
};
```
Flooding FSM: Warm-Up Flow

Flooding

111

TIDE \{A,B,C,\ldots\}

TIDE \{X,Y,Z^*\}

TIEs \{A,B,C\}

remove
TDYEZ,\ldots,X,Y,Z\}
from
TX
TIRE for \{A,B,C\}

TIRE for Z^*

TIRE for Z^*

TIDE \{A,B,C,\ldots\}

TIDE \{A,B,C,X,Y,Z^*\}

TIDE \{\ldots,X,Y,Z^*\}

21
HAL to B(est) Available Level for Leafs

- Current HAL rule will pick the adjacency to core_3 as best and abandon all adjacencies as lower level for edge_3002 (leaf)
- Seems undesirable
- Default rule will be changed to BAL = best link*bandwidth product achieved at a level
 - Bandwidth will be carried on LIEs now as well
- Can be changed/configured per leaf
 - Does not have to be uniform even
Partitioned Superspines and Complex Failures Preview

- Next version will have an extensive write-down on “partitioned superspines”, i.e. something where top of fabric does not see each other fully via southbound reflection

- To deal with all failures in such cases we will need ”negative transitive disaggregation”
 - A prefix \(\sim X/Y\) will be advertised southbound by a superspine A
 - Node below installs under default X/Y with nexthop ‘everyone except A’
 - When all spines above advertise \(\sim X/Y\), the \(\sim X/Y\) is propagated southbound

- Positive disaggregation at most one level (fast reflex arc)

- Negative transitive disaggregation can heal failures that need decision at leaf to prevent blackholing
THANK YOU FOR YOUR ATTENTION