RIFT Hackathon

IETF 102



Participants

Dmitry Afanasiev (Yandex)

Don Fedyk (HPE)

Tony Przygienda (Juniper)
Bruno Rijsman (No affiliation)
Jeff Tantsura (Nuage Networks)
Pascal Thubert (Cisco)

llya Vershkov (Mellanox)

Zhaohui (Jeffrey) Zhang (Juniper)



Participating RIFT Implementations

* Vendor RIFT implementation
* Open source Python RIFT implementation



Vendor RIFT Implementation

* Contributed by Tony Przygienda

* Nearly complete implementation of draft-ietf-rift-rift-02:
LIE FSM, ZTP FSM, Flooding FSM, IPv4, IPvé

e Binary available: https://www.juniper.net/us/en/dm/free-rift-trial/
e Runs on MacOS or Linux (no physical router needed)
e Can simulate large multi-node topologies defined in “topology YAML"



https://www.juniper.net/us/en/dm/free-rift-trial/

Open Source Python RIFT
Implementation

* Contributed by Bruno Rijsman

* Very partial implementation of draft-ietf-rift-rift-02:
LIE FSM, IPv4

e Started implementing ZTP FSM during hackathon (not complete yet)

e Open source: https://github.com/brunorijsman/rift-python

* Written in Python, tested on MacOS and Linux

* Intended for experimentation, not for production

* Can simulate small multi-node topologies

* Uses same topology configuration file as vendor implementation


https://github.com/brunorijsman/rift-python
https://github.com/brunorijsman/rift-python

Achieved LIE FSM 3-Way Adjacency in 3
hours

agg_202> show interface if_202_1

POD —
State THREE_WAY
Neighbor £

L
L)

Interface: Neighbor:

| Interface Name | if_202_1 | | Name | None
| Advertised Name | agg_202-if_202_1 | | System ID | 1

| Interface IPv4 Address | | | IPv4 Address | 172.31.16.255
| Metric | 1 | | LIE UDP Source Port | 20021
| Receive LIE IPv4 Multicast Address | 224.0.100.2 | | Link ID | 28672
| Transmit LIE IPv4 Multicast Address | 224.0.100.1 | | Level | 2

| Receive LIE IPv6 Multicast Address | FF02::0078 | | Flood UDP Port | 20023
| Transmit LIE IPv6 Multicast Address | FF@2::0078 | | MTU | 1400
| Receive LIE Port | 20021 | | POD | @

| Transmit LIE Port | 20022 | | Hold Time | 3

| Receive TIE Port | 20024 | | Not a ZTP Offer | False
| System ID | 202 | | You Are Not a ZTP Flood Repeater | False
| Local ID | 1 | | Your System ID | 202

| MTU | 1500 | | Your Local ID | 1

| |

| |

Jul 18 20:16:39.243 received peoflestion=first time, rebuild packet
Jul 18 20:16:39.244 addjacencl 3-way up |



Summary of Results

* Quickly achieved interoperability between vendor and Python RIFT:
LIE FSM adjacency in state 3-way (IPv4)

* Very detailed interoperability report:
http://bit.ly/ietf-102-rift-hackathon-interop-report

e Started implementation of ZTP FSM in Python RIFT
Expected to be completed in weeks

* Detailed review of ietf-draft-rift-rift-02:
http://bit.ly/rift-comments
Live document for other commenters and author responses

* Additional minor comments on draft while implementing ZTP


http://bit.ly/ietf-102-rift-hackathon-interop-report
http://bit.ly/ietf-102-rift-hackathon-interop-report
http://bit.ly/ietf-102-rift-hackathon-interop-report
http://bit.ly/rift-comments

Summary of Lessons Learned

* Model-based protocol encoding works and has great benefits
* Multicast is very platform dependent
* Attending a hackathon is very useful even for non-coders



Lesson Learned

Model-Based Protocol Encoding

* RIFT uses Thrift to model protocol packet encoding

* All packet encoding and decoding code is generated
* Can implement encoding and decoding in a matter of minutes
* High confidence in correctness of encoding and decoding code

e Discovered limitations of Thrift

* Thrift does not support unsigned integers (only signed i8, i16, i32, i64)
* The RIFT draft specifies that certain signed integers MUST be treated as unsigned
* This severely dilutes the value of code auto-generation (must manually “fudge” fields)
* Actually caused platform-dependent crash (encoded IP address out of range in Python)

* Existing Thrift framework for transport cannot be used (UDP is not supported)

* Bottom line: using model-based encoding works and helps a lot



Lesson Learned

Multicast is Very Platform-Dependent

* Particularly IPv6 multicasts
* Different socket options across platforms

* Different behavior of same socket options across platforms



Follow-up Work

* Finish Python RIFT
* /TP FSM, flooding FSM, IPvé, ...
e Considering port to Free Range Router (FRR)

* More interoperability testing
* |n future IETF hackathons
* |n interim hackathon (ZTP state machine)

* Convergence and correctness testing in addition to interop testing

* Performance: How quickly does RIFT (re)converge
* Correctness: Does RIFT (re)converge to the correct tables in all scenarios

* More RIFT implementations are welcome to join



	Slide 1
	Participants
	Participating RIFT Implementations
	Vendor RIFT Implementation
	Open Source Python RIFT Implementation
	Achieved LIE FSM 3-Way Adjacency in 3 hours
	Summary of Results
	Summary of Lessons Learned
	Lesson Learned Model-Based Protocol Encoding
	Lesson Learned Multicast is Very Platform-Dependent
	Follow-up Work

