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Participating RIFT Implementations

* Vendor RIFT implementation
* Open source Python RIFT implementation



Vendor RIFT Implementation

* Contributed by Tony Przygienda

* Nearly complete implementation of draft-ietf-rift-rift-02:
LIE FSM, ZTP FSM, Flooding FSM, IPv4, IPvé

e Binary available: https://www.juniper.net/us/en/dm/free-rift-trial/
e Runs on MacOS or Linux (no physical router needed)
e Can simulate large multi-node topologies defined in “topology YAML"



https://www.juniper.net/us/en/dm/free-rift-trial/

Open Source Python RIFT
Implementation

* Contributed by Bruno Rijsman

* Very partial implementation of draft-ietf-rift-rift-02:
LIE FSM, IPv4

e Started implementing ZTP FSM during hackathon (not complete yet)

e Open source: https://github.com/brunorijsman/rift-python

* Written in Python, tested on MacOS and Linux

* Intended for experimentation, not for production

* Can simulate small multi-node topologies

* Uses same topology configuration file as vendor implementation


https://github.com/brunorijsman/rift-python
https://github.com/brunorijsman/rift-python

Achieved LIE FSM 3-Way Adjacency in 3
hours

agg_202> show interface if_202_1

POD —
State THREE_WAY
Neighbor £

L
L)

Interface: Neighbor:

| Interface Name | if_202_1 | | Name | None
| Advertised Name | agg_202-if_202_1 | | System ID | 1

| Interface IPv4 Address | | | IPv4 Address | 172.31.16.255
| Metric | 1 | | LIE UDP Source Port | 20021
| Receive LIE IPv4 Multicast Address | 224.0.100.2 | | Link ID | 28672
| Transmit LIE IPv4 Multicast Address | 224.0.100.1 | | Level | 2

| Receive LIE IPv6 Multicast Address | FF02::0078 | | Flood UDP Port | 20023
| Transmit LIE IPv6 Multicast Address | FF@2::0078 | | MTU | 1400
| Receive LIE Port | 20021 | | POD | @

| Transmit LIE Port | 20022 | | Hold Time | 3

| Receive TIE Port | 20024 | | Not a ZTP Offer | False
| System ID | 202 | | You Are Not a ZTP Flood Repeater | False
| Local ID | 1 | | Your System ID | 202

| MTU | 1500 | | Your Local ID | 1

| |

| |

Jul 18 20:16:39.243 received peoflestion=first time, rebuild packet
Jul 18 20:16:39.244 addjacencl 3-way up |



Summary of Results

* Quickly achieved interoperability between vendor and Python RIFT:
LIE FSM adjacency in state 3-way (IPv4)

* Very detailed interoperability report:
http://bit.ly/ietf-102-rift-hackathon-interop-report

e Started implementation of ZTP FSM in Python RIFT
Expected to be completed in weeks

* Detailed review of ietf-draft-rift-rift-02:
http://bit.ly/rift-comments
Live document for other commenters and author responses

* Additional minor comments on draft while implementing ZTP


http://bit.ly/ietf-102-rift-hackathon-interop-report
http://bit.ly/ietf-102-rift-hackathon-interop-report
http://bit.ly/ietf-102-rift-hackathon-interop-report
http://bit.ly/rift-comments

Summary of Lessons Learned

* Model-based protocol encoding works and has great benefits
* Multicast is very platform dependent
* Attending a hackathon is very useful even for non-coders



Lesson Learned

Model-Based Protocol Encoding

* RIFT uses Thrift to model protocol packet encoding

* All packet encoding and decoding code is generated
* Can implement encoding and decoding in a matter of minutes
* High confidence in correctness of encoding and decoding code

e Discovered limitations of Thrift

* Thrift does not support unsigned integers (only signed i8, i16, i32, i64)
* The RIFT draft specifies that certain signed integers MUST be treated as unsigned
* This severely dilutes the value of code auto-generation (must manually “fudge” fields)
* Actually caused platform-dependent crash (encoded IP address out of range in Python)

* Existing Thrift framework for transport cannot be used (UDP is not supported)

* Bottom line: using model-based encoding works and helps a lot



Lesson Learned

Multicast is Very Platform-Dependent

* Particularly IPv6 multicasts
* Different socket options across platforms

* Different behavior of same socket options across platforms



Follow-up Work

* Finish Python RIFT
* /TP FSM, flooding FSM, IPvé, ...
e Considering port to Free Range Router (FRR)

* More interoperability testing
* |n future IETF hackathons
* |n interim hackathon (ZTP state machine)

* Convergence and correctness testing in addition to interop testing

* Performance: How quickly does RIFT (re)converge
* Correctness: Does RIFT (re)converge to the correct tables in all scenarios

* More RIFT implementations are welcome to join
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