
RIFT Hackathon
IETF 102

1

Participants
Dmitry Afanasiev (Yandex)

Don Fedyk (HPE)

Tony Przygienda (Juniper)

Bruno Rijsman (No affiliation)

Jeff Tantsura (Nuage Networks)

Pascal Thubert (Cisco)

Ilya Vershkov (Mellanox)

Zhaohui (Jeffrey) Zhang (Juniper)

2

Participating RIFT Implementations
• Vendor RIFT implementation

• Open source Python RIFT implementation

3

Vendor RIFT Implementation
• Contributed by Tony Przygienda

• Nearly complete implementation of draft-ietf-rift-rift-02:
LIE FSM, ZTP FSM, Flooding FSM, IPv4, IPv6

• Binary available: https://www.juniper.net/us/en/dm/free-rift-trial/

• Runs on MacOS or Linux (no physical router needed)

• Can simulate large multi-node topologies defined in “topology YAML”

4

https://www.juniper.net/us/en/dm/free-rift-trial/

Open Source Python RIFT
Implementation
• Contributed by Bruno Rijsman

• Very partial implementation of draft-ietf-rift-rift-02:
LIE FSM, IPv4

• Started implementing ZTP FSM during hackathon (not complete yet)

• Open source: https://github.com/brunorijsman/rift-python

• Written in Python, tested on MacOS and Linux

• Intended for experimentation, not for production

• Can simulate small multi-node topologies

• Uses same topology configuration file as vendor implementation

5

https://github.com/brunorijsman/rift-python
https://github.com/brunorijsman/rift-python

Achieved LIE FSM 3-Way Adjacency in 3
hours

6

Summary of Results
• Quickly achieved interoperability between vendor and Python RIFT:

LIE FSM adjacency in state 3-way (IPv4)

• Very detailed interoperability report:
http://bit.ly/ietf-102-rift-hackathon-interop-report

• Started implementation of ZTP FSM in Python RIFT
Expected to be completed in weeks

• Detailed review of ietf-draft-rift-rift-02:
http://bit.ly/rift-comments
Live document for other commenters and author responses

• Additional minor comments on draft while implementing ZTP

7

http://bit.ly/ietf-102-rift-hackathon-interop-report
http://bit.ly/ietf-102-rift-hackathon-interop-report
http://bit.ly/ietf-102-rift-hackathon-interop-report
http://bit.ly/rift-comments

Summary of Lessons Learned
• Model-based protocol encoding works and has great benefits

• Multicast is very platform dependent

• Attending a hackathon is very useful even for non-coders

8

Lesson Learned

Model-Based Protocol Encoding
• RIFT uses Thrift to model protocol packet encoding

• All packet encoding and decoding code is generated
• Can implement encoding and decoding in a matter of minutes
• High confidence in correctness of encoding and decoding code

• Discovered limitations of Thrift
• Thrift does not support unsigned integers (only signed i8, i16, i32, i64)

• The RIFT draft specifies that certain signed integers MUST be treated as unsigned

• This severely dilutes the value of code auto-generation (must manually “fudge” fields)

• Actually caused platform-dependent crash (encoded IP address out of range in Python)

• Existing Thrift framework for transport cannot be used (UDP is not supported)

• Bottom line: using model-based encoding works and helps a lot

9

Lesson Learned

Multicast is Very Platform-Dependent
• Particularly IPv6 multicasts

• Different socket options across platforms

• Different behavior of same socket options across platforms

10

Follow-up Work
• Finish Python RIFT

• ZTP FSM, flooding FSM, IPv6, …
• Considering port to Free Range Router (FRR)

• More interoperability testing
• In future IETF hackathons
• In interim hackathon (ZTP state machine)

• Convergence and correctness testing in addition to interop testing
• Performance: How quickly does RIFT (re)converge
• Correctness: Does RIFT (re)converge to the correct tables in all scenarios

• More RIFT implementations are welcome to join

11

	Slide 1
	Participants
	Participating RIFT Implementations
	Vendor RIFT Implementation
	Open Source Python RIFT Implementation
	Achieved LIE FSM 3-Way Adjacency in 3 hours
	Summary of Results
	Summary of Lessons Learned
	Lesson Learned Model-Based Protocol Encoding
	Lesson Learned Multicast is Very Platform-Dependent
	Follow-up Work

