
An Information Model
for Manifests

draft-ietf-suit-information-model-01

1

Status

• Draft –v1 was published in time for the
deadline; v0 was published ahead of the Berlin
Hackathon/virtual interim meeting.

• Lots of changes in both versions

• This talk focuses only on a subset.

2

THREATS

3

Unqualified Firmware
Multiple Network Operators with a Single Device

Operator

• Assumptions:

– Device Operators expect the rights to create firmware

– Network Operators expect the rights to qualify firmware as fit-for-
purpose on their networks

– Device Operators manage devices that can be deployed on any
network

• Attack Scenario:

– An attacker may obtain a manifest for a device on Network A.

– Then, this attacker sends that manifest to a device on Network B.

– Because Network A and Network B are under control of different
Operators, and the firmware for a device on Network A has not been
qualified to be deployed on Network B, the target device on Network
B is now in violation of the Operator B's policy and may get disabled
by this unqualified, but signed firmware.

4

Unqualified Firmware
Single Network Operator with Multiple Device

Operators

• Multiple devices that interoperate are used on the same
network and communicate with each other.

• Some devices are manufactured and managed by Device
Operator A and other devices by Device Operator B.

• A new firmware is released by Device Operator A that breaks
compatibility with devices from Device Operator B.

• An attacker sends the new firmware to the devices managed
by Device Operator A without approval of the Network
Operator.

• This breaks the behaviour of the larger system causing denial
of service and possibly other threats.

5

USE CASE/USABILITY
REQUIREMENT

6

Terminology

• Heterogeneous Storage Architecture (HeSA):
A device that stores at least one firmware
component differently from the rest.
• Example: A device with internal and SPI-connected

external flash memory.

• Homogeneous Storage Architecture (HoSA):
A device that stores all firmware components in the same
way.

• Example: Storage in on-chip flash memory.

7

Multiple Payloads/Firmware Images

• Example 1: Multiple Microcontrollers
An IoT device with multiple microcontrollers in the
same physical device (HeSA) will likely require
multiple payloads with different component
identifiers.

8

Multiple Payloads/Firmware Images

• Example 2: Code and Configuration
A firmware image can be divided into two payloads:
code and configuration. These payloads may require
authorizations from different actors in order to
install. This structure means that multiple manifests
may be required, with a dependency structure
between them.

9

Multiple Payloads/Firmware Images

• Example 3: Multiple Chunks
A firmware image can be divided into multiple
functional blocks for separate testing and
distribution. This means that code would need to be
distributed in multiple payloads. For example, this
might be desirable in order to ensure that common
code between devices is identical in order to reduce
distribution bandwidth.

10

Rollback

• Use case introduced by David Brown.

• Imagine a battery powered device connected to a
bandwidth constrained network.

• Device keeps old firmware in case of rollback.

• Rollback could require distribution of old firmware +
manifest (with increased sequence number).

• Draft also allows just to distribute a new manifest pointing
to the old firmware (still with increased sequence number).

• Covered implicitly by the spec but not described in the
document.

11

MANIFEST ELEMENTS

12

Processing Steps

• A list of all payload processors necessary to process a
nested format and any parameters needed by those
payload processors.

• Each Processing Step SHOULD indicate the expected
digest of the payload after the processing is
complete.

• Processing steps are distinct from Directives in that
Directives apply to the manifest as a whole, whereas
Processing Steps apply to an individual payload and
provide instructions on how to unpack it.

13

Storage Locations

• This element tells the device which component is being updated. The
device can use this to establish which permissions are necessary and the
physical location to use.

• Two Storage Locations:
A device supports two components: an OS and an application. These components
can be updated independently, expressing dependencies to ensure compatibility
between the components.

• File System
A device supports a full filesystem. The firmware authority chooses to make the
storage identifier the path at which to install the payload.

• Flash Memory
A device supports flash memory. The firmware authority chooses to make the
storage identifier the offset where the image should be written.

14

Component Identifier

• In a heterogeneous storage architecture, a
storage identifier is insufficient to identify
where and how to store a payload.

• To resolve this, a component identifier
indicates which part of the storage
architecture is targeted by the payload.

15

Conditions

• Some conditions need to be checked before
installation
– Identifiers, time, precursors

• Some conditions need to be checked after
installation.

• Conditions now split into pre-conditions and
post-conditions. Change made to manifest
format but not to information model.

16

Directives, Aliases, Dependencies, etc.

• Most recent changes in manifest serialization draft:
– Dependencies, Aliases, and payload info are now

resources

– Payloadinfo is divided into resources, processors, and
targets

• Text regarding directives, aliases and dependencies
out of sync with manifest serialization document.

• More detailed explanation about status in email: https

://www.ietf.org/mail-archive/web/suit/current/msg00570.html

17

https://www.ietf.org/mail-archive/web/suit/current/msg00570.html
https://www.ietf.org/mail-archive/web/suit/current/msg00570.html
https://www.ietf.org/mail-archive/web/suit/current/msg00570.html

Next Steps

• Separating information model from serialization format
sounds useful but is difficult to accomplish in practice.
– Changes to manifest serialization format lead to changes in

information model and vice versa.

– Reviewers like to focus on solution rather than abstract
information model.

– Lots of changes recently.

• Recommended approach in the future:
– Start with one document and then when discussions are

settled split the functionality.

18

	Slide 1
	Status
	Threats
	Slide 4
	Slide 5
	Use Case/Usability Requirement
	Terminology
	Multiple Payloads/Firmware Images
	Multiple Payloads/Firmware Images
	Multiple Payloads/Firmware Images
	Rollback
	Manifest Elements
	Processing Steps
	Storage Locations
	Component Identifier
	Conditions
	Directives, Aliases, Dependencies, etc.
	Next Steps

