CBOR Manifest Serialisation

Highlights

* Primary structure is array (not map)

* Text is severable

* Multiple payloads allowed

* Resources (before installation) separated from assets (after installation)
* Description of installation process in the manifest

* Conditions divided into preconditions and postconditions

 Added component identifier (replaces storage identifier)

* Timestamp removed, added sequence number

WIP status

* This serialization is still in development
* There is ongoing discussion on the mailing list
* See Open Issues for more information

Primary structure is array (not map)

* Most fields are mandatory
* Version
 digestinfo*
* Nonce
* Sequence
* Preconditions
* Resources
* Targets

* Those that aren’t used cost 1 byte
* Out of 12 fields, 7 are mandatory
*digestInfo is the subject of an open issue

Severable Text

* Text is for humans

* Text is not used by devices to make decisions
* Devices don't need to receive text

* Text is still needed in management systems

Severable Text (cont'd)

* Text lives outside the authenticated container
AuthenticatedManifest = [
authenticatedManifest: COSE_Mac / COSE_Sign,
text: bstr .cbor TextMap
]
TextKeys = &(
uninitialised: 0
manifestDescription: 1
payloadDescription: 2
vendorName: 3
modelName: 4
payloadVersion: 5
) / nint

TextMap = { * TextKeys => tstr }

Severable Text (cont'd)

* Inside the authenticated container, text is authenticated with a digest

Multiple payloads

* Payloads had three components:
* Aresource identifier
* Installation instructions (cryptographic info)
* An asset description

* Required extension for advanced uses (e.g. Delta)

* Aliases, Dependencies, Payloads are now all resource references
* Assets are now separate from their resource identifier

* Installation instructions are now separate (examples below)

Resources separated from assets

* All resource references are effectively the same
* No need to distinguish between alias, dependency, payload

* Resources define a local or remote input
* URI
* Digest
* Assets define an installed image:
* Size
* Digest
* Location

Description of installation process in
manifest

* Why not leave container information in the payload(s)?

* Reject early if unsupported
* I[mportant for low-bandwidth

* Why not enums for aggregate formats?
* Lots of specialized parameters.

* Many possible configurations.
* Registration space of accepted enums becomes large

Description of installation process in
manifest

* Example:
* Raw binary payload: no arguments

* Encrypted binary payload:
* key identifier
* algorithm identifier
* Encrypted, compressed binary payload:
* key identifier
* encryption algorithm identifier
* compression algorithm identifier

* Encrypted, compressed, delta payload
* key identifier
* encryption algorithm identifier
* compression algorithm identifier
* precursor digest
* precursor component ID, storage location
* delta algorithm identifier

Description of installation process in
manifest

* Each enum would need its own parameter structure
* Easy to miss a reasonable combination of supported steps

* Describe each step instead
* Each step can have a defined structure
* All steps can be represented in the same way

 How is flow described?

* Flow of data between steps is a tree, not a linear sequence

* Delta makes it clear that flow is at least a tree
* Aresource shared between two steps makes it clear that flow is a graph

* Graphs make constrained processing hard
* Use multiple trees instead of a graph

Description of installation process in
manifest

* For each asset, a tree defines the installation process

* To reduce nesting depth in the parser, the tree is encoded as a list, where
* output identifiers are the index of the processor in the processor list
* inputs are a map of indices into the processor list.

* Resources are encoded as a processor with no inputs
* Assets designate a single input node
* OQutput nodes can be marked as non-overridable

* Dependent manifests can override any installation tree not marked as non-
overridable

Examples:

* Raw Binary payload

* |nstallation Information:
e Component Identifier: [bstr(0)]
* Resource:
* Parameters: List of URIs
* Asset Information
e Component Identifier: [bstr(0)]
* Encoding: raw-binary

Examples:

* Delta payload

* |nstallation Information:
e Component Identifier: [bstr(1)]
* Processors:
* Delta: {1=>1,2=>2}
* Resource: URIs
* Resource: [bstr(1)]
* Asset Information
e Component Identifier: [bstr(1)]
* Encoding: raw-binary
* inode: bstr(2)

Conditions divided into preconditions and
postconditions

* Some conditions need to be checked before installation
* |dentifiers, time, precursors, custom

* Some conditions need to be checked after installation
* Content not identified by an asset digest, custom

* Two choices:
* Two lists
* makes it easier for devices to know what to do in each step of the process
* typically costs 1 byte
* Duplicate condition identifiers
* typically smaller serialization

* duplication of identifiers may increase integer encoding size
* more registration and maintenance with duplicate identifiers

Component lIdentifier

* Storage ldentifier may not be adequate for all use cases

* Devices can be aggregates of one or more processors with two or
more different storage systems

* Component ldentifier allows designating the storage system

* Storage systems and hardware components can be nested

* Component Identifier needs to be a list to handle this.

* Storage Identifier can be merged into this list as the last element.

Open issues

* Should one digest be used for the whole manifest, or is there a good reason
to support more than one?

* Should more sections be severable?
* Should it be possible to encrypt severable sections?

* Should the graph described in draft-moran-suit-manifest-02 be replaced

with trees?
* How are they overridden?
* How are they represented?
* Are there any use cases that break?

* Should encryption of the manifest be addressed explicitly, or should that be
handled one level higher?

Open Issues (Cont'd)

* Encoding of Processing Step
* Encoding of Directive

* Encoding of Conditions
* JANA implications for use of enums throughout the manifest

* Extension encoding

	Slide 1
	Highlights
	WIP status
	Primary structure is array (not map)
	Severable Text
	Severable Text (cont’d)
	Severable Text (cont’d)
	Multiple payloads
	Resources separated from assets
	Description of installation process in manifest
	Description of installation process in manifest
	Description of installation process in manifest
	Description of installation process in manifest
	Examples:
	Examples:
	Conditions divided into preconditions and postconditions
	Component Identifier
	Open issues
	Open Issues (Cont’d)

