CBOR Manifest Serialisation



Highlights

* Primary structure is array (not map)

* Text is severable

* Multiple payloads allowed

* Resources (before installation) separated from assets (after installation)
* Description of installation process in the manifest

* Conditions divided into preconditions and postconditions

 Added component identifier (replaces storage identifier)

* Timestamp removed, added sequence number



WIP status

* This serialization is still in development
* There is ongoing discussion on the mailing list
* See Open Issues for more information



Primary structure is array (not map)

* Most fields are mandatory
* Version
 digestinfo*
* Nonce
* Sequence
* Preconditions
* Resources
* Targets

* Those that aren’t used cost 1 byte
* Out of 12 fields, 7 are mandatory
*digestInfo is the subject of an open issue



Severable Text

* Text is for humans

* Text is not used by devices to make decisions
* Devices don't need to receive text

* Text is still needed in management systems



Severable Text (cont'd)

* Text lives outside the authenticated container
AuthenticatedManifest = [
authenticatedManifest: COSE_Mac / COSE_Sign,
text: bstr .cbor TextMap
]
TextKeys = &(
uninitialised: 0
manifestDescription: 1
payloadDescription: 2
vendorName: 3
modelName: 4
payloadVersion: 5
) / nint

TextMap = { * TextKeys => tstr }



Severable Text (cont'd)

* Inside the authenticated container, text is authenticated with a digest



Multiple payloads

* Payloads had three components:
* Aresource identifier
* Installation instructions (cryptographic info)
* An asset description

* Required extension for advanced uses (e.g. Delta)

* Aliases, Dependencies, Payloads are now all resource references
* Assets are now separate from their resource identifier

* Installation instructions are now separate (examples below)



Resources separated from assets

* All resource references are effectively the same
* No need to distinguish between alias, dependency, payload

* Resources define a local or remote input
* URI
* Digest
* Assets define an installed image:
* Size
* Digest
* Location



Description of installation process in
manifest

* Why not leave container information in the payload(s)?

* Reject early if unsupported
* I[mportant for low-bandwidth

* Why not enums for aggregate formats?
* Lots of specialized parameters.

* Many possible configurations.
* Registration space of accepted enums becomes large



Description of installation process in
manifest

* Example:
* Raw binary payload: no arguments

* Encrypted binary payload:
* key identifier
* algorithm identifier
* Encrypted, compressed binary payload:
* key identifier
* encryption algorithm identifier
* compression algorithm identifier

* Encrypted, compressed, delta payload
* key identifier
* encryption algorithm identifier
* compression algorithm identifier
* precursor digest
* precursor component ID, storage location
* delta algorithm identifier



Description of installation process in
manifest

* Each enum would need its own parameter structure
* Easy to miss a reasonable combination of supported steps

* Describe each step instead
* Each step can have a defined structure
* All steps can be represented in the same way

 How is flow described?

* Flow of data between steps is a tree, not a linear sequence

* Delta makes it clear that flow is at least a tree
* Aresource shared between two steps makes it clear that flow is a graph

* Graphs make constrained processing hard
* Use multiple trees instead of a graph



Description of installation process in
manifest

* For each asset, a tree defines the installation process

* To reduce nesting depth in the parser, the tree is encoded as a list, where
* output identifiers are the index of the processor in the processor list
* inputs are a map of indices into the processor list.

* Resources are encoded as a processor with no inputs
* Assets designate a single input node
* OQutput nodes can be marked as non-overridable

* Dependent manifests can override any installation tree not marked as non-
overridable



Examples:

* Raw Binary payload

* |nstallation Information:
e Component Identifier: [ bstr(0) ]
* Resource:
* Parameters: List of URIs
* Asset Information
e Component Identifier: [ bstr(0) ]
* Encoding: raw-binary



Examples:

* Delta payload

* |nstallation Information:
e Component Identifier: [ bstr(1) ]
* Processors:
* Delta: {1=>1,2=>2}
* Resource: URIs
* Resource: [ bstr(1) ]
* Asset Information
e Component Identifier: [ bstr(1) ]
* Encoding: raw-binary
* inode: bstr(2)



Conditions divided into preconditions and
postconditions

* Some conditions need to be checked before installation
* |dentifiers, time, precursors, custom

* Some conditions need to be checked after installation
* Content not identified by an asset digest, custom

* Two choices:
* Two lists
* makes it easier for devices to know what to do in each step of the process
* typically costs 1 byte
* Duplicate condition identifiers
* typically smaller serialization

* duplication of identifiers may increase integer encoding size
* more registration and maintenance with duplicate identifiers



Component lIdentifier

* Storage ldentifier may not be adequate for all use cases

* Devices can be aggregates of one or more processors with two or
more different storage systems

* Component ldentifier allows designating the storage system

* Storage systems and hardware components can be nested

* Component Identifier needs to be a list to handle this.

* Storage Identifier can be merged into this list as the last element.



Open issues

* Should one digest be used for the whole manifest, or is there a good reason
to support more than one?

* Should more sections be severable?
* Should it be possible to encrypt severable sections?

* Should the graph described in draft-moran-suit-manifest-02 be replaced

with trees?
* How are they overridden?
* How are they represented?
* Are there any use cases that break?

* Should encryption of the manifest be addressed explicitly, or should that be
handled one level higher?



Open Issues (Cont'd)

* Encoding of Processing Step
* Encoding of Directive

* Encoding of Conditions
* JANA implications for use of enums throughout the manifest

* Extension encoding
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