
CBOR Manifest
Serialisation

1

Open issues
• Should the primary object be an array or a map?

• Should the graph described in draft-moran-suit-manifest-02 be replaced with trees?
• How are they overridden?
• How are they represented?
• Are there any use cases that break?

• Should one digest be used for the whole manifest, or is there a good reason to
support more than one?

• Should more sections be severable?
• Should it be possible to encrypt severable sections?

• COSE has no algorithm identifiers for digests, so they cannot be reused
• May need another SUIT draft for COSE

2

Open Issues (Cont’d)

• Should encryption of the manifest be addressed explicitly, or should
that be handled one level higher?

• Encoding of Processing Step

• Encoding of Directive

• Encoding of Conditions

• Extension encoding

• IANA implications for use of enums throughout the manifest

3

Primary structure array vs map

• Most fields are mandatory
• Version
• digestInfo*
• Nonce
• Sequence
• Preconditions
• Resources
• Targets

• Those that aren’t used cost 1 byte (nil or 0-length object)

• Out of 12 fields, 7 are mandatory

4

Tree-based process description proposal

• Things that are installed (assets) get their own section
• Digest
• Size
• Component identifier

• Description of how to obtain an asset:
• Component identifier
• List of processing steps
• Resources are a processing step with URIs or a ComponentIdentifier instead

of inputs

5

Tree-based process description (cont’d)
Asset = [

 component: ComponentIdentifier, ; where to store the asset

 encoding: bstr / nil, ; the format of the asset

 parameters: bstr / nil, ; any specialized arguments for installing the asset

 size: uint / nil, ; size of the resource

 digest: Digest ; digest of the processed resource

]

ComponentIdentifier = [* bstr]

Digest = [

 digestAlgorithm : DigestIdentifiers / nint, ; Digest identifier

 rawDigest : bstr ; Raw bytes of the digest

 ? digestParameters : bstr ; optional extra arguments to the algorithm

]

6

Tree-based process description (cont’d)
AssetInstallationInfo = [

 component : ComponentIdentifier

 processors : [* Processor],

 ? allowOverride : bool,

 ? extensions : { * int => bstr }

]

Processor = [

 type: &(resource: 1, decrypt: 2, decompress: 3,

 undiff: 4, relocate: 5, unrelocate: 6) / nint,

 inputs: UriList / ComponentIdentifier / {int => int},

 parameters: bstr ; Note: this needs to have more detail instead of bstr

]

7

Description of installation process in
manifest
• Why not leave container information in the payload(s)?

• Reject early if unsupported
• Important for low-bandwidth

• Why not enums for aggregate formats?
• Lots of specialized parameters.
• Many possible configurations.
• Registration space of accepted enums becomes large

8

Description of installation process in
manifest
• Example:

• Raw binary payload: no arguments
• Encrypted binary payload:

• key identifier

• algorithm identifier

• Encrypted, compressed binary payload:
• key identifier

• encryption algorithm identifier

• compression algorithm identifier

• Encrypted, compressed, delta payload
• key identifier

• encryption algorithm identifier

• compression algorithm identifier

• precursor digest

• precursor component ID, storage location

• delta algorithm identifier

9

Description of installation process in
manifest
• Each enum would need its own parameter structure

• Easy to miss a reasonable combination of supported steps

• Describe each step instead
• Each step can have a defined structure

• All steps can be represented in the same way

• How is flow described?

• Flow of data between steps is a tree, not a linear sequence
• Delta makes it clear that flow is at least a tree

• A resource shared between two steps makes it clear that flow is a graph

• Graphs make constrained processing hard

• Use multiple trees instead of a graph

10

Description of installation process in
manifest
• For each asset, a tree defines the installation process

• To reduce nesting depth in the parser, the tree is encoded as a list, where
• output identifiers are the index of the processor in the processor list
• inputs are a map of indices into the processor list.

• Resources are encoded as a processor with no inputs

• Assets designate a single input node

• Output nodes can be marked as non-overridable

• Dependent manifests can override any installation tree not marked as non-
overridable

11

Examples:

• Raw Binary payload
• Installation Information:

• Component Identifier: [bstr(0)]

• Resource:
• Parameters: List of URIs

• Asset Information
• Component Identifier: [bstr(0)]

• Encoding: raw-binary

12

Examples:

• Delta payload
• Installation Information:

• Component Identifier: [bstr(1)]

• Processors:
• Delta: {1 => 1, 2 => 2}

• Resource: URIs

• Resource: [bstr(1)]

• Asset Information
• Component Identifier: [bstr(1)]

• Encoding: raw-binary

• inode: bstr(2)

13

Current changes

14

Highlights of changes

• Primary structure is array (not map)

• Text is severable

• Multiple payloads allowed

• Resources (before installation) separated from assets (after installation)

• Description of installation process in the manifest

• Conditions divided into preconditions and postconditions

• Added component identifier (replaces storage identifier)

• Timestamp removed, added sequence number

15

WIP status

• This serialization is still in development

• There is ongoing discussion on the mailing list

• See Open Issues for more information

16

Severable Text

• Text is for humans

• Text is not used by devices to make decisions

• Devices don’t need to receive text

• Text is still needed in management systems

17

Severable Text (cont’d)
• Text lives outside the authenticated container
AuthenticatedManifest = [

 authenticatedManifest: COSE_Mac / COSE_Sign,

 text: bstr .cbor TextMap

]

TextKeys = &(

 uninitialised: 0

 manifestDescription: 1

 payloadDescription: 2

 vendorName: 3

 modelName: 4

 payloadVersion: 5

) / nint

TextMap = { * TextKeys => tstr }

18

Severable Text (cont’d)

• Inside the authenticated container, text is authenticated with a digest

19

Multiple payloads

• Payloads had three components:
• A resource identifier
• Installation instructions (cryptographic info)
• An asset description

• Required extension for advanced uses (e.g. Delta)

• Aliases, Dependencies, Payloads are now all resource references

• Assets are now separate from their resource identifier

• Installation instructions are now separate (examples below)

20

Resources separated from assets

• All resource references are effectively the same

• No need to distinguish between alias, dependency, payload

• Resources define a local or remote input
• URI
• Digest

• Assets define an installed image:
• Size
• Digest
• Location

21

Conditions divided into preconditions and
postconditions
• Some conditions need to be checked before installation

• Identifiers, time, precursors, custom

• Some conditions need to be checked after installation
• Content not identified by an asset digest, custom

• Two choices:
• Two lists

• makes it easier for devices to know what to do in each step of the process

• typically costs 1 byte

• Duplicate condition identifiers
• typically smaller serialization

• duplication of identifiers may increase integer encoding size

• more registration and maintenance with duplicate identifiers

22

Component Identifier

• Storage Identifier may not be adequate for all use cases

• Devices can be aggregates of one or more processors with two or
more different storage systems

• Component Identifier allows designating the storage system

• Storage systems and hardware components can be nested

• Component Identifier needs to be a list to handle this.

• Storage Identifier can be merged into this list as the last element.

23

	Slide 1
	Open issues
	Open Issues (Cont’d)
	Primary structure array vs map
	Tree-based process description proposal
	Tree-based process description (cont’d)
	Tree-based process description (cont’d)
	Description of installation process in manifest
	Description of installation process in manifest
	Description of installation process in manifest
	Description of installation process in manifest
	Examples:
	Examples:
	Current changes
	Highlights of changes
	WIP status
	Severable Text
	Severable Text (cont’d)
	Severable Text (cont’d)
	Multiple payloads
	Resources separated from assets
	Conditions divided into preconditions and postconditions
	Component Identifier

