
A Firmware Update Architecture
for Internet of Things Devices

draft-ietf-suit-architecture-01

1

Changes between -00* and -01

• New terminology for entities

• Updated operating modes

• Device Firmware Update Examples

• Added David Brown as co-author

• Many editorial changes

• New figures

*: draft-ietf-suit-architecture-00 was discussed at the virtual interim meeting 2

ENTITIES

3

Author & Device

• Author: The author is the entity that creates the
firmware image and a manifest.
– There can be multiple authors in a system (

firmware consisting of multiple software components,
or device running multiple MCUs)

– There are also other parties that can create a manifest
even though they do not create new firmware

• Device: Definition updated to point out that the
device may need multiple firmware images.

4

Communicator

• The communicator component of the device
interacts with the firmware update server.

• It receives firmware images and triggers an update,
if needed.

• The communicator either polls a firmware update
server for the most recent manifest/firmware or
manifests/firmware images are pushed to it.

• Note that the firmware update process may involve multiple
stages since one or multiple manifests may need to be
downloaded before the communicator can fetch one or
multiple firmware images/software components.

5

Status Tracker

• The status tracker offers device management
functionality that includes keeping track of the
firmware update process. (It typically knows
what firmware / software is run on the
devices.)

• This includes fine-grained monitoring of
changes at the device, for example, what state
of the firmware update cycle the device is
currently in.

6

Firmware Server

• Entity that stores firmware images and
manifests. Some deployments may require
storage of the firmware images/manifests on
more than one entities before they reach the
device.

7

Device & Network Operator

• Device Operator: The actor responsible for the
day-to-day operation of a fleet of IoT devices.

• Network Operator: The actor responsible for the
operation of a network to which IoT devices
connect.

• Both may also create manifests (for already
existing firmware)

8

Trust Provisioning Authority (TPA)

• The TPA distributes trust anchors and authorization
permissions to various entities in the system.

• The TPA may also delegate rights to install, update,
enhance, or delete trust anchors and authorization
permissions to other parties in the system.

• This infrastructure overlaps the communication
architecture and different deployments may
empower certain entities while other deployments
may not.

9

OPERATING MODES

10

Operating modes

1. Client-initiated Update:
Client-initiated updates take the form of a communicator on a
device proactively checking for new firmware imagines provided by
firmware servers.

2. Server-initiated Update:
The status tracker determines what devices qualify for a firmware
update. Once those devices have been selected the firmware server,
in cooperation with the status tracker, distributes updates to those
devices.

3. Hybrid Update:
The status tracker pushes notifications of availability of an update to
the device, and the communicator then downloads the image from
the firmware server when it wants.

11

COMMUNICATION ARCHITECTURE

12

 Firmware + +----------+ Firmware + +-----------+
 Manifest | |-+ Manifest | |-+
 +--------->| Firmware | |<---------------| | |
 | | Server | | | Author | |
 | | | | | | |
 | +----------+ | +-----------+ |
 | +----------+ +-----------+
 |
 |
 |
 -+-- ------
 ---- | ---- ---- ----
 // | \\ // \\
 / | \ / \
 / | \ / \
 / | \ / \
 / | \ / \
 | v | | |
 | +------------+ |
	Communicator					
+--------+---+	Device	+--------+				
			Management			
	Device	<----------------------------->	Status			
					Tracker	
+--------+						
			+--------+			
	\ /					
 \ / \ /
 \ / \ Device /
 \ Network / \ Operator /
 \ Operator / \\ //
 \\ // ---- ----
 ---- ---- ------
 -----C

o
m

m
u

n
ic

ati
o

n
 A

rc
h

it
ec

tu
re

13

DEVICE FIRMWARE UPDATE
EXAMPLES

14

Single CPU SoC

• The simplest, and currently most common, architecture
consists of a single MCU along with its own peripherals.

• These SoCs generally contain some amount of flash memory
for code and fixed data, as well as RAM for working storage.

• These systems either have a single firmware image, or an
immutable bootloader that runs a single image.

• A notable characteristic of these SoCs is that the primary
code is generally execute in place (XIP).

• Combined with the non-relocatable nature of the code,
firmware updates need to be done in place.

15

Single CPU with Secure - Normal Mode
Partitioning

• Another configuration consists of a similar architecture to the
previous, with a single CPU.

• However, this CPU supports a security partitioning scheme
that allows memory (in addition to other things) to be divided
into secure and normal mode.

• There will generally be two images, one for secure mode, and
one for normal mode. In this configuration, firmware
upgrades will generally be done by the CPU in secure mode,
which is able to write to both areas of the flash device.

• In addition, there are requirements to be able to update
either image independently, as well as to update them
together atomically, as specified in the associated manifests.

16

Dual CPU, shared memory

• This configuration has two or more CPUs in a
single SoC that share memory (flash and
RAM). Generally, they will be a protection
mechanism to prevent one CPU from
accessing the other's memory. Upgrades in
this case will typically be done by one of the
CPUs, and is similar to the single CPU with
secure mode.

17

Dual CPU, other bus

• This configuration has two or more CPUs, each having their own memory.

• There will be a communication channel between them, but it will be used
as a peripheral, not via shared memory. In this case, each CPU will have
to be responsible for its own firmware upgrade.

• It is likely that one of the CPUs will be considered a master, and will direct
the other CPU to do the upgrade.

• This configuration is commonly used to offload specific work to other
CPUs.

• Firmware dependencies are similar to the other solutions above,
sometimes allowing only one image to be upgraded, other times
requiring several to be upgraded atomically. Because the updates are
happening on multiple CPUs, upgrading the two images atomically is
challenging.

18

NEXT STEPS

19

Random Thoughts

• More editorial clean-up

• Incorporate feedback from this meeting

• More text about device interactions and
bootloader design

• Better alignment with information model

20

	Slide 1
	Changes between -00* and -01
	Entities
	Author & Device
	Communicator
	Status Tracker
	Firmware Server
	Device & Network Operator
	Trust Provisioning Authority (TPA)
	Operating Modes
	Operating modes
	Communication Architecture
	Communication Architecture
	Device Firmware Update Examples
	Single CPU SoC
	Single CPU with Secure - Normal Mode Partitioning
	Dual CPU, shared memory
	Dual CPU, other bus
	Next Steps
	Random Thoughts

