T2TRG: Thing-to-Thing Research Group

IETF 102
July 19, 2018, Montréal, CA

Chairs: Carsten Bormann & Ari Keränen
Note Well

- You may be recorded

- The IPR guidelines of the IETF apply: see http://irtf.org/ipr for details.
Administrivia (I)

- Pink Sheet
- Note-Takers
- Off-site (Jabber, Hangout?)
 - `xmpp:t2trg@jabber.ietf.org?join`
- Mailing List: `t2trg@irtf.org` — subscribe at: https://www.ietf.org/mailman/listinfo/t2trg
Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Who</th>
<th>Subject</th>
<th>Docs</th>
</tr>
</thead>
</table>
| 15:50 | Chairs | Intro, RG Status | draft-irf-t2trg-iot-seccons-15
| | | | draft-irf-t2trg-rest-iot-01 |
| 16:00 | Michael Koster / Chairs | Report from WISHI and Hackathon | |
| | Michael Koster | iot.schema.org update | |
| | Matthias Kovatsch | W3C Update | |
| 16:40 | | Next steps in security | draft-garciamorchon-t2trg-automated-iot-security |
| 17:40 | Chairs | Wrap-up | |
| 17:50 | | Meeting ends | |
Next Steps in Security

• Oscar Garcia-Morchon: Automated IoT Security
• Mohit Sethi: Enabling Network Access for IoT devices from the Cloud
• René Struik: Next Steps in Security
• Dirk Kutscher: Decentralized Trust for IoT and In-Network-Computing
• Carsten Bormann: IoT Security Semantics and Semantics Security
T2TRG scope & goals

• Open research issues in turning a true "Internet of Things" into reality

• Internet where low-resource nodes ("things", "constrained nodes") can communicate among themselves and with the wider Internet

• Focus on issues with opportunities for IETF standardization

• Start at the IP adaptation layer

• End at the application layer with architectures and APIs for communicating and making data and management functions, including security
Recent activities

• Work on IoT/Semantic Hypermedia Interoperability (WISHI): bi/tri-weekly calls and hackathon

• “State-of-the-Art and Challenges for the IoT Security” ready for publication

• Joint WebEx sessions with OCF on CoRE technologies: CoRE Resource Directory, Dynamic Linking, REST conventions, Object Security

• Starting to kick-off joint work with OMA SpecWorks
Identified Research Topics

• Good executable models that enable extracting information from byte strings and upgrading to data model level of JSON/CBOR

• Generate one worked example: Semantics of state of and operations on a light (seriously, this is not as trivial as it sounds)

• Looking at various description techniques and models from other SDOs; how do they handle protocol evolution and how can improve
Next meetings

- Regular WISHI calls (~ monthly)
- Virtual meetings, F2F? with OCF
- Virtual meetings with OMA SpecWorks (LwM2M & IPSO)
- Bangkok IETF 103
 - IoT Edge Computing session?
 - WISHI hackathon?
- Co-locating with academic conferences 2019?
Edge and In-Network computing

- Multiple RGs with relevant activities: T2TRG, ICNRG, DINRG, PEARG

- E.g.,
 - recent submission: draft-hong-iot-edge-computing
 - IETF 100 Edge Computing T2TRG session
 - Joint meeting at IETF 103 (Bangkok)?
RG Doc Status

- “State-of-the-Art and Challenges for the IoT Security” ready
- “RESTful Design for IoT” (next slide)
- Upcoming:
 - Document(s) to be shaped from CoRAL and CoRE Apps?
 - Inter-network Coexistence in IoT?
RESTful Design for IoT

• Hypermedia guidance included in -01

• More IoT specifics throughout the draft

• Role of REST constraints for IoT

• System characteristic: REST used for scaling down & need to evolve without simultaneous updates

• Terminology updates: dereference & -able URI. Nondeferrable URI example of dev:urn
Next steps with RESTful IoT

- Author review round for internal consistency. See the Github draft for latest.
- Revive, summarize, and reference CoRE Apps
- Submit new version for broader review (e.g., microservices community)
Not a RG document: draft-sarikaya-t2trg-sbootstrapping

- Survey of security bootstrapping methods
- Originally a 6LoWPAN document
- Further developed in T2TRG
- Not much feedback
- Do we have the energy (and the interest) to evolve that as a RG document?
Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Who</th>
<th>Subject</th>
<th>Docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:50</td>
<td>Chairs</td>
<td>Intro, RG Status</td>
<td>draft-irtf-t2trg-iot-seccons-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>draft-irtf-t2trg-rest-iot-01</td>
</tr>
<tr>
<td>16:00</td>
<td>Michael Koster / Chairs</td>
<td>Report from WISHI and Hackathon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Michael Koster</td>
<td>iot.schema.org update</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matthias Kovatsch</td>
<td>W3C Update</td>
<td></td>
</tr>
<tr>
<td>16:40</td>
<td></td>
<td>Next steps in security</td>
<td>draft-garciamorchon-t2trg-automated-iot-security</td>
</tr>
<tr>
<td>17:40</td>
<td>Chairs</td>
<td>Wrap-up</td>
<td></td>
</tr>
<tr>
<td>17:50</td>
<td></td>
<td>Meeting ends</td>
<td></td>
</tr>
</tbody>
</table>
WISHI
IETF 102 Hackathon
iot.schema.org

T2TRG - IETF 102
Michael Koster
Thing 2 Thing...
WISHI

• Work on IoT Semantic and Hypermedia Interoperability
• Bi-weekly teleconferences held between IETF meetings
• Semantic Interoperability hands-on testing and breakout sessions at IETF Hackathons (100, 101, 102)
WISHI Teleconference Topics

• W3C WoT Thing Description (Matthias Kovatsch)
• Processing models for semantic data
• Terminology for layers (Carsten Bormann)
• How to integrate IoT with Energy (Bruce Nordman)
• Impact of JSON LD 1.1 work on Thing Descriptions
• W3C plugfest and WISHI (Matthias Kovatsch)
• WISHI hackathon planning
• Using iot.schema.org with IPSO/LwM2M models
Other SDOs

• Work with devices from IoT ecosystems and SDOs, and tools/specifications from other organizations
 • OCF
 • OMA LWM2M
 • GENIVI VSS (Automotive IVI)

• W3C Web of Things
• iot.schema.org
WoT Thing Description

● TD is a file format and mediatype of RDF
● Describes abstract Interactions with things
 ○ Read temperature
 ○ Lock the door
 ○ Change the brightness of a light
● Binds to concrete instances that implement the interactions
 ○ Defines payload structure
 ○ Defines data characteristics; type, range, units
 ○ Transfer layer instructions including URI, methods, options
● Applications use abstract interactions to decouple from the underlying implementation
● The WoT implementation can automatically adapt to the specifics of the device protocol and data formats
• External vocabulary for Semantic Annotation of Thing Description instances
• Semantic Categories to annotate systems at different layers
• High level capabilities with control plane (interaction) and data plane (data item) annotations
Layered Scope in Data Models and Information Models

Information Models

Data Models

- **iot.schema.org** *Capabilities* (Event, Action, Property)
- **W3C WoT** *Thing Description* (Application Facing Media Type)
- Protocol Binding
 - Device Specific Protocols: OCF, LWM2M, IPSO, dotdot

"What I want to do"

"How to do it"
Hackathon

WISH1
Work on IoT
Semantic
Hypermedia
Interoperability
IETF 102 Hackathon

• Overall Goals
• Technical Components
• Projects
• Learning
• Results
WISHI Hackathon Objectives

• Test Hypermedia and Semantic Interoperability mechanisms in a hands-on environment, with hardware components
• Interoperate across teams/contributors
• Learn about gaps in existing systems and new requirements
• Test extensions and new patterns
• Have breakout discussions to explore issues
System Architecture and Roles
Web of Things Components

- Node-wot
- Thing directory
- Thing
- Application
- Directory
- Proxy
- Router
- WAN
- LAN
- Bridge
- Directory
- Eco
- Eco
Technical Components (1)

• Mediatypes
 • CoRE Link-Format and Web Linking (RFC6690, RFC8288)
 • WoT Thing Description
 • OMA LWM2M
 • SenML
 • JSON

• Protocols
 • HTTP
 • CoAP
 • MQTT
 • DNS-SD
Technical Components (2)

• Software Components
 • Thingweb - node-wot
 • Thingweb - Thing Directory
 • CoRE Resource Directory
 • Node-RED

• Some Bridged Ecosystems
 • OCF
 • LWM2M
 • IKEA Lighting
 • Philips Hue
Projects

• IPSO/LWM2M mapping using WoT Thing Description and iot.schema.org
• OCF mapping using WoT Thing Description and iot.schema.org
• RD Implementation
• W3C Wot Protocol Bindings to CoAP+DTLS devices
• Semantic wrapper for W3C WoT Scripting API
• DNSSD
Some Results

• Breakout discussion on high level work items/areas
• Demonstrated interoperation between generic clients and diverse devices
• Closed 44 issues with node-wot implementation and moved to Eclipse Foundation
• Got RD implementation up to speed and ready to integrate Thing Directory functionality
• Demonstrated automatic interaction with diverse CoAP+DTLS servers
• Report in progress
Breakout Topics

• How we attach models to existing instances of descriptive data / metadata
• Shared models across device ecosystems
• High level semantic API
• Mapping TD to Link-Format
• Discovery use cases and scenarios
• How and where is Semantic Interoperability used?
Learning

• We have a fairly complete stack and tool set to get started – now we should build out
• We should think more about high level applications and test cases for interoperability
• We might think about modeling internal behavior
• Setup time is still a big issue, taking most of the first day
• We should prioritize a way to conduct distributed testing and enable a virtual LAN
• We need alternate implementations of critical functions
iot.schema.org Update

• About 1 year of experience since the WISHI workshop in Prague, July 2017
• Validating the basic categories and annotation style in WoT Thing Description annotation
• Used in WoT Plugfests and WISHI hackathons
• 20-30 initial experimental definitions
• Feature of Interest pattern added for physical world context
Example Semantic Annotation

```json
{
  "@context": [
    "http://w3c.github.io/wot/w3c-wot-td-context.jsonld",
    "http://w3c.github.io/wot/w3c-wot-common-context.jsonld",
    {"iot": "http://iotschema.org/"}
  ],
  "base": "coap://example.net:5683/",
  "@type": [ "Thing", "iot:TemperatureCapability" ],
  "name": "Temperature Sensor",
  "interaction": [
    {
      "name": "Temperature",
      "@type": [ "Property", "iot:Temperature" ],
      "outputData": {
        "type": "object",
        "field": [
          {
            "name": "temperature",
            "@type": [ "iot:TemperatureData" ],
            "type": "number",
            "minimum": -50,
            "maximum": 100,
            "unit": "Celsius"
          }
        ]
      }
    }
  ]
}
```
Feature Of Interest Pattern
iot.schema.org Roadmap

• Developing a process to accept contributions
 • W3C CG for vocabulary incubation
 • Github PR to "incoming" folder
 • CI Validation
 • Review and acceptance
 • Publication on iot.schema.org

• Create introductory materials
• Create tools to help build and use definitions
• Build out Feature of Interest
• Enable multiple vertical application domains
• Monthly Community Teleconference
W3C Web of Things – Summary

• Counter fragmentation in the IoT
 – Web of Things (WoT) vs Internet of Things (IoT) is similar to World Wide Web vs Internet
 – Take patterns from the World Wide Web and adapt and apply them to the IoT
 - JSON, Schema, and Linked Data
 - URIs and Media Types
 - JavaScript runtime

• By Describing and Complementing
 – Not competing with existing IoT standards, as not prescribing a full-stack solution
 – W3C WoT offers building blocks to pick that enable semantic interoperability
 - WoT Thing Description (TD)
 - WoT Binding Templates
 - WoT Scripting API
JavaScript

W3C Web of Things – Building Block Approach

WoT Thing Description (TD)

JSON(-LD) representation format to describe Thing instances with metadata. Uses formal interaction model and domain-specific vocabularies to uniformly describe how to use Things and interpret their data/services.

WoT Scripting API

Standardized JavaScript object API for an IoT runtime system similar to the Web browser. Provides an interface between applications and Things to simplify IoT application development and enable portable apps across vendors, devices, edge, and cloud.

WoT Binding Templates

Mappings of the formal Interaction Model to concrete protocol operations (e.g., CoAP) and platform features (e.g., OCF). Existing templates are used to easily produce TDs for the Things of the corresponding platform.
W3C WoT Approach – Batteries Included

WoT Thing Description (TD)

JSON(-LD) representation format to describe Thing instances with metadata. Uses formal interaction model and domain-specific vocabularies to uniformly describe how to use Things and interpret their data/services.

JavaScript

WoT Scripting API

Standardized *JavaScript* object API for an IoT runtime system similar to the Web browser. Provides an interface between applications and Things to simplify IoT application development and enable portable apps across vendors, devices, edge, and cloud.

WoT Binding Templates

Mappings of the formal Interaction Model to concrete protocol operations (e.g., CoAP) and platform features (e.g., OCF). Existing templates are used to easily produce TDs for the Things of the corresponding platform.
Changed to “Simplified TD” in March 2018

• **JSON-LD 1.1 processing**
 – Objects instead of arrays (“idiomatic JSON”)
 – Default values (e.g., "writable": false)
 – Framing to serialize and preprocess

• **Semantic annotations optional**
 – TDs can be treated as simple JSON format
 – New Media Type application/td+json
 – Context and terms known via media type
 – No JSON-LD keywords or processing required
 – No LD convention of terms being singular
 – properties, actions, events on top level

• **JSON Schema compatibility**
 – Data schema syntax now also identical
 – Payloads can be validated directly with JSON Schema implementations

• **New terms**
 – id (as mandatory)
 – description
 – support
 – … collecting more
Changes in “Simplified TD”

OLD

{ "@context": "https://wot-wot-td-context.jsonld", "name": "lamp", "base": "coaps://servient.example.com/things/lamp/", "interaction": [{ "@type": "Property", "name": "on", "schema": { "type": "boolean" }, "writable": false, "observable": false, "form": [{ "href": "properties/on", "MediaType": "application/cbor" }], "@type": "Property", "name": "brightness", "writable": true, "observable": false, "schema": { "type": "integer", "minimum": 0, "maximum": 100 }, "form": [{ "href": "properties/status", "MediaType": "application/cbor" }], "@type": "Action", "name": "fade", "inputSchema": { "type": "object", "properties": { "from": { "type": "integer", "minimum": 0, "maximum": 100 }, "to": { "type": "integer", "minimum": 0, "maximum": 100 }, "duration": { "type": "number" } } }, "forms": [{ "href": "things/lamp/actions/fade", /* encType would be for the request body opposed to mediaType, which is for target
FIXME: can have both meanings based on context (links/forms)? */ "encType": "application/json", "mediaType": "application/json" }]]}

NEW

{ "id": "urn:devops:32475-smartlight-4711", "name": "lamp", "description": "Corner torchiere", "base": "coaps://servient.example.com/things/lamp/", "properties": { "on": { "type": "boolean", "forms": [{ "href": "properties/on", "MediaType": "application/cbor" }], "brightness": { "type": "integer", "minimum": 0, "maximum": 100 "writable": true, "forms": [{ "href": "properties/status", "MediaType": "application/cbor" }] } }, "actions": { "fade": { "input": { "type": "object", "properties": { "from": { "type": "integer", "minimum": 0, "maximum": 100 }, "to": { "type": "integer", "minimum": 0, "maximum": 100 }, "duration": { "type": "number" } } }, "forms": [{ "href": "things/lamp/actions/fade", /* encType would be for the request body opposed to mediaType, which is for target
FIXME: can have both meanings based on context (links/forms)? */ "encType": "application/json", "mediaType": "application/json" }] } } }
Changes in “Simplified TD”
Changes in “Simplified TD”

OLD

"events": {
"overheated": {
"type": "object",
"properties": {
"temperature": { "type": "number" }
},
"forms": [{
 "href": "https://.../events/overheated",
 "subProtocol": "LongPoll",
 "mediaType": "application/json"
}
]
},
"link": [{
 "href": "https://servient.example.com/things/pir",
 "rel": "controlledBy",
 "mediaType": "application/ld+json"
]
}

NEW

"events": {
"overheated": {
"type": "object",
"properties": {
 "temperature": { "type": "number" }
},
"forms": [{
 "href": "https://.../events/overheated",
 "subProtocol": "LongPoll",
 "mediaType": "application/json"
}
]
"links": [{
 "href": "https://servient.example.com/things/pir",
 "rel": "controlledBy",
 "mediaType": "application/td+json"
}
]"
let thing = WoT.produce(
 { name: "counter",
 // no support for
 // more metadata
 });

console.log("Created thing " + thing.name);

thing.addProperty(
 { name: "count",
 schema: '{ "type": "number"}',
 // no support for
 // custom metadata
 observable: true,
 writeable: true,
 value: 0
 });

thing.addAction({ name: "increment" });

let thing = WoT.produce(
 { name: "counter",
 description: "counter example Thing",
 "@context": { "iot": "http://iotschema.org/" }
 });

console.log("Created thing " + thing.name);

thing.addProperty(
 { "count",
 "type": "integer",
 description: "current counter value",
 "iot:Custom": "example annotation",
 observable: true,
 writeable: true
 },
 0);

thing.addAction("increment");

let thing = WoT.produce(
 { name: "counter",
 description: "counter example Thing",
 "@context": { "iot": "http://iotschema.org/" }
 });

console.log("Created thing " + thing.name);

thing.addProperty(
 { name: "count",
 schema: '{ "type": "number"}',
 // no support for
 // custom metadata
 observable: true,
 writeable: true,
 value: 0
 });

thing.addAction({ name: "increment" });

thing.setActionHandler("increment", () => {
 return thing.readProperty("count").then(res => {
 thing.writeProperty("count", ++res);
 });
});
Changes in Scripting API

OLD

```javascript
WoT.fetch("http://localhost:8080/counter")
  .then(td => {
    let thing = WoT.consume(td);
    // introspection had to parse td
    // in application code
    thing.readProperty("count")
      .then(res => {
        console.info("count value is", res);
      })
      .catch(err => { console.error(err); });
    thing.invokeAction("increment");
  })
  .catch(err => { console.error(err); });
```

NEW

```javascript
WoT.fetch("http://localhost:8080/counter")
  .then(td => {
    let thing = WoT.consume(td);
    // introspection support (type, desc., iot:Custom, ...)
    console.dir(thing.properties.count);
    thing.properties.count.get()
      .then(res => {
        console.info("count value is", res);
      })
      .catch(err => { console.error(err); });
    thing.actions.increment.invoke();
  })
  .catch(err => { console.error(err); });
```
W3C Web of Things – Todos until Release

• WoT Thing Description
 – Extend model to efficiently support read-/write-multiple interactions
 – Revisit Events to allow for input on subscribe (e.g., filters)
 – Finalize model for security vocabulary
 – Align links field with draft-ietf-core-links-json
 ▪ Found issue with type attribute lacking parameter support
 – Collect more core vocabulary terms (e.g., version, created, lastModified)

• IANA Considerations
 ▪ application/td+json and CoAP Content-Format number
W3C Web of Things – Todos until Release

• WoT Scripting API
 – Model read-/write-multiple interactions in the API
 – Finalize discovery
 – Define API errors

• WoT Binding Templates
 – Create extension point for hypermedia-driven Actions and Events
 ▪ application/wot+json and CoAP Content-Format number

• WoT Security and Privacy
 – Refine initial but extensible security vocabulary (based on TD model)
 – Start a “living” Working Group Note on “WoT Security Best Practices”
Contact

Dr. Matthias Kovatsch
Senior Research Scientist

Siemens AG
CT RDA IOT EWT-DE

matthias.kovatsch@siemens.com
Next Steps in Security

• Oscar Garcia-Morchon: Automated IoT Security
• Mohit Sethi: Enabling Network Access for IoT devices from the Cloud
• René Struik: Next Steps in Security
• Dirk Kutscher: Decentralized Trust for IoT and In-Network-Computing
• Carsten Bormann: IoT Security Semantics and Semantics Security
Automated IoT Security
Goal of the Draft

Solving the mismatch between

- The security capabilities and settings with which IoT devices are designed / manufactured / deployed
- The actual security requirements of the IoT devices in different environments over time

Problems to solve

Problem 1: Different environments
• Deploying in a home is not the same as in an office or in the Department of Defense

Problem 2: Evolving threats
• Algorithms become insecure
• Bugs in software are found
• Users change their preferences

Problem 3: Pre-configuration is not always right
• a product owner doesn’t know they should disable a protocol;
• a developer doesn’t remove all of the off ending code (just some uses of it);
• the documentation doesn’t mention the protocol, even though the device implements it;
Overview

➢ Part 1: Examples of Security Threats and Mitigation strategies for IoT
 ○ Firmware Replacement
 ○ Extraction of private information
 ○ Data leakage - cryptographic keys

➢ Part 2: Security framework to include existing risk and vulnerability assessment processes
 ○ Business Impact Analysis
 ○ Risk Assessment
 ○ Privacy Impact Assessment
 ○ Vulnerability Assessment
 ○ Incident Reporting
during the lifecycle of a smart object
Part 3: Security Profiles and application to IoT devices in a specific environment including

- a short descriptive name
- an exemplary application that might use the security profile
- the main security threats applicable to the profile
- the security mitigations required by the profile
- specific configuration parameters for the protocols and actors involved in the application
PASC - Protocol for Automatic Security Configuration

Enabling automatic security configuration of Things by shifting methodologies for risk management from the tailored product design and implementation phases to the onboarding phase.

Current practice

- **Design**
- **Manufacturing**
- **Installed**
- **Commissioned**
- **App running**

- **BIA**
- **RA**
- **PIA**

- Generic

- Thing deployed with security that does not fit the environment

PASC: 1st protocol in our draft

- **Design**
- **Manufacturing**
- **Installed**
- **Commissioned**
- **App running**

- **BIA**
- **RA**
- **PIA**

- Environment specific

- Security profile config

- Thing deployed with security that fits the environment
PASC - Protocol for Automatic Security Configuration

High-level idea of PASC

- Thing to publish its usage profile to a Gateway
- Gateway gathers additional information about the Thing, the usage and expected interactions of the smart object with other devices in the deployment environment (e.g. via MUD, portscan)
- Gateway performs an automated risk assessment
 - Determines potential threats on the device and on deployment environment
 - Determines security profile containing mitigations
- Deploy updated security profiles
 - to the Thing itself
 - to other devices already present in the deployment environment (other smart objects, Firewalls)
PAVA - Protocol for Automatic Vulnerability Assessment

Current practice

PAVA: Second protocol in our draft

Vulnerabilities appear

Environment specific
PAVA - Protocol for Automatic Vulnerability Assessment

High-level idea of PAVA

- Thing to send standardized reports of potential vulnerabilities to a Gateway via Syslog
- Gateway to analyse the reports and decide regarding the existence of a vulnerability, its origin and its impact
- Gateway to run additional and continuous analysis of each Thing based on Security Profile

Enabling updates of security profiles in real time and automatic incident reporting towards

- the user
- the manufacturer
- the deployment environment provider
Benefits

- Benefits for manufacturers
 - no need to decide which security mitigations are required for each product
 - simply describe the expected usage of the Thing

- Benefits for system operators
 - minimize operational cost while ensuring that the system remains secure at any moment
 - enabling automation for security configuration in deployment environments with potentially millions of smart Things

- Benefits for end users
 - security configuration is done in an automatic way
 - users “don’t need to do anything”
IETF T2TRG: Enabling Network Access for IoT devices from the Cloud

IETF 102
19 July, 2018
Montreal
Authorizing network access for IoT devices

- New off-the-shelf devices need Internet access
 - for vendor and third-party services in the cloud
 - for software update
Authorizing network access for IoT devices

Two problems:

• **Discovery and configuration**: which network?
 • For example, need to find the right SSID and cloud server

• **Security bootstrapping**: identifiers and credentials?
 • For connecting to the network
 • For connecting to the cloud
Authorizing network access for IoT devices

Challenges:

- Limited user interface
- Scalability
- At home, small office, enterprise or industrial environment
 - Clueless users vs. professional admins and support
 - On the other hand, *same devices everywhere*
- Wi-Fi (WPA-Personal and WPA Enterprise), Zigbee, BTLE
Authorizing network access for IoT devices

Current Solutions for network access authorization:

- **Manual** configuration and key distribution
 - Pairing with smart phone over Bluetooth
 - Wifi (Un)Protected Setup (WPS)
- **Managed** solutions
 - RADIUS / DIAMETER / 802.1x
 - Vendor and enterprise certificates
Scenario:
cloud-connected IoT appliance

NAI [RFC7542] = *@vendorA.com
Scenario: cloud-connected IoT appliance

NAI [RFC7542] = *@vendorB.com
Scenario:
cloud-connected IoT appliance

NAI [RFC7542] = *@vendorC.com
Scenario: cloud-connected IoT appliance
Next Steps in Security?

(Discussion in t2trg)

René Struiik
Struiik Security Consultancy
E-mail: rstruiik.ext@gmail.com

IETF 102 – Montreal, QC, Canada, July 19, 2018
Putting Trust in Devices

Conventional Approach
- Trusted implementation of crypto, including side channel resistance
- Trusted security policy routines
- Secure and authentic key storage
- Secure RNG (or RNG seed)

Ideal Functionality
- Single function for each task
- Minimizes overall implementation cost

Note:
Seemingly conflicts with “crypto agility”
Keying Material

Ideal Functionality
- Single function for each task
- Minimization overall implementation cost

Questions:
- Can one use single public key pair \((d, Q)\) for both key agreement and signing?
 - Single certificate cost, lower key management cost
 - Current perception: “verboten!”
- Can one use single symmetric key \(K\)?
 - Different keys provide logical channel separation (however, key hierarchy could lower cost)
- Does one need high-quality random number \(seed\)?
 - Long-term keys need high-quality RNG source
 - What about short-term keys, derived keys?
 - What about RNG needs remainder of device?
 - *Distinguish on-device vs. off-device randomness*
Crypto Functions

Ideal Functionality
- Single function for each task
- Minimization overall implementation cost

Questions:
- Can one reuse existing implementations, even with crypto agility?
 - ECC example: CFRG curves vs. NIST curve
- Can one use single “Swiss Army” symm.-key construct?
 - Block-cipher mode of operation, hash function, etc.
 - Keccak-family to the rescue?
- Are small devices “doomed” should PQ-hype be real?
 - Symmetric-key crypto: not just impact on key size, but also authentication tag length and cryptanalysis (e.g., PQ-distinguishingers in cipher building blocks)
 - Public-key crypto: can passwords help? Or, does one really need (nascent) PQ-schemes with large parms?
 - If classical threats already ignored, why care about PQ…?
Key Management

Ideal Functionality
- Single function for each task
- Minimization overall implementation cost

Questions:
- How does one limit impact of key compromise?
 - short-lived certificates at reduced cost?
 - could “ledger” as key repository help?
- What about key provisioning, device configuration and commissioning
- Homo- or heterogeneous devices and networks?

What about privacy and control?
- who owns data?
- what about switching cost?

Note: technology is not neutral here... Should it?
Concluding remarks

Please reflect on questions as homework assignment...
Decentralized Trust
for IoT and In-Network-Computing

Dirk.Kutscher@huawei.com
Industrial IoT

- Enterprise/public cloud realm
- Factory/enterprise DC realm
- Factory Floor Realm
- Deterministic Networking Realm
Industrial IoT

Enterprise/public cloud realm

Factory/enterprise DC realm

Factory Floor Realm

Deterministic Networking Realm

Data analytics, archival

Cloudified control apps (virtual PLC etc.)

Data exchange & control (OPC UA, DDS)

Ethernet Time Sensitive Networking (TSN)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1ASrev</td>
<td>Timing & Synchronization</td>
</tr>
<tr>
<td>802.1Qbv</td>
<td>Enhancements for Scheduled Traffic (Timed Gates for Egress Queues)</td>
</tr>
<tr>
<td>802.1Qbu</td>
<td>Frame Preemption</td>
</tr>
<tr>
<td>802.1Qca</td>
<td>Path Control and Reservation</td>
</tr>
<tr>
<td>802.1Qtc</td>
<td>Central Configuration Management</td>
</tr>
<tr>
<td>802.1Qtq</td>
<td>Per-Stream Time-Based Ingress Filtering and Policing</td>
</tr>
<tr>
<td>802.1CB</td>
<td>Redundancy Frame Replication & Elimination</td>
</tr>
</tbody>
</table>

OPC-UA, DDS
Vision for Future Industrial IoT

- Enterprise/public cloud realm
- Factory/enterprise DC realm
- Factory Floor Realm
- Deterministic Networking Realm
Vision for Future Industrial IoT

Factory/Enterprise network as a multi-tenant environment
China Mobile: Beyond Edge Computing

BEC takes care of the first hop where the service of a particular industrial vertical connects to the network.
Data Logistics

- IoT data flows upstreams
 - Network infrastructure optimized for downstream consumption
- Cloud-based model not always optimal
 - Trust, latency, scale

Also cf. Srikathyayani Srikanteswara, Jeff Foerster, Eve Schooler:
ICN-WEN Information Centric Networking in Wireless Edge Networks;
Presentation at ICNRG@IETF-98, March 2017
Different Perspectives on Compute & Networking

(Virtualized) Compute Servers in Networks

Networked Computations
In-Network Computing
With Client-Server Protocols

- Overlays
 - Connection-based security
 - Client-server / broker-based
 - Limited Scalability
 - Pub-sub distribution to many clients through single-server bottleneck

- Limited efficiency
 - Cannot share data directly
 - Limited performance and robustness
 - Network cannot assist data dissemination

Adding a little computation to a data kiosk system is not exactly distributed computing.
What If…
We leveraged modern technology instead?

- Unikernels, Super-light-weight-VMs
 - Computation not as a static service but as a dynamic capability

- Light-weight scripting
 - MicroPython
 - MACCHIATO

- Trusted Execution Environments

- Data-oriented communication and programming abstractions
 - Information-Centric Networking, Named Function Networking
 - Reactive Programming

- Decentralized Trust Management
 - Distributed Consensus Protocols for Infrastructure Services
 - Finding stuff, trusting things, nano-payments
What If…
We leveraged modern technology instead?

Towards building networks where computation is a first-order service – not an afterthought
Vision:
Compute-First Networking

• Leverage increasing availability of computation at different scales

• Distributed computing as first-order principle — not as an afterthought through overlays

• Enable a wide range of new applications that are not possible or not easy to realize today

• Create general principles and architectures that can be mapped to different environments: edge analytics, DC Big Data processing, in-network computing in access networks etc.

• Fundamentally change the way we perceive and use ICT
路漫漫其修远兮
吾将谨慎而行之
The road is long and hard. I shall be careful with my steps.
Overlays vs. Networked Computing

- Decoupling higher layer functionality from lower layer network
- Simple network layer — intelligence in the overlay
- Generality over efficiency

- Integrating functionality into network data plane
- Closing “gap” between applications and networks
- Efficiency over generality?
Compute-First Networking: Principles and Features

• **Distributed Computing Framework**
 • Conceiving networking and computation holistically
 • Concept of “data plane” for distributed computing: self-organized, self-optimizing, networking with as little management/orchestration as possible
 • Applicable to many current and future use cases

• **Principles**
 • Connection-less communication with a strong security model
 • Computation as a first order principle
 • Application-agnostic platform
 • Multi-tenancy as a first-order principle

• **Key features**
 • Highly dynamic
 • Agnostic to (access) network technologies
 • Agnostic to specific virtualization technologies (compute can run on different platforms)
 • Natural APIs to applications
 • Works well in well-connected (e.g., cloud-based) scenarios, without depending on cloud: decentralized operation possible
Named Function as a Service (NFaaS)

- Completely distributed
- Moving function where they're needed
- Functions as stateless unikernels
- Nodes run popularity contest
- Different forwarding strategies
Decentralized Computations

Named Function as a Service

SPOC
- Automatic payments and result verification
- Based on Smart Contracts and Intel SGX
- No 3rd parties involved
- Secure against Rational Attacker
- Minimal computational overhead
- No calls privacy

Michał Król, Ioannis Psaras; Decentralized Computations; Presentation at IRTF Proposed DINRG Interim Meeting, February 2018
Trust Management

• **Assumption: CFN will enable a rich eco system of distributed applications**
 • Very large number of application modules / compute functions in the network
 • Security will be a major challenge: Distributed systems tend to enlarge attack surfaces: many components instead of one
 • Especially trust management and authorization: Who is allowed to access which function, and how can you trust identities?

• Authorizing network/compute usage

• Authorizing access to shared data and computation results

• Trusting compute functions and execution platforms
 • Need to automate verification and enforcement of security policies in the network

• **Decentralized Trust**
 • Enabling nodes, networks, organisations to trust each other
 • Without relying on centralized trust infrastructure
Food for Thought

- Lack of accepted common basis for edge, fog, in-network computing seems to suggest need for principled approach: **Compute-First Networking**
- What is a good balance between generality and efficiency?
- To what extent can/should we empower the data plane?
- What are the requirements for **Decentralized Trust Management**? (DINRG meeting Friday morning)
Semantics for Security
Security for Semantics

Carsten Bormann 2018-07-19 T2TRG
(1) Security Information has Semantics

- Access Control data (ACLs, capabilities, tokens)
- Identities, Claims, Assertions, Attestations
- Privacy labels, privacy preferences
Heterogeneous Security Environments

• Might need to make decision based on security data from different ecosystems (e.g., use identity from ES1 to access resources structured along ES2)

• Ecosystems often have tacit security properties ➔ heterogeneity generally requires making those explicit
$n^2 - n$
2n

Semantics
How secure is semantic processing of security data?

• Even with tacit parts exposed: Fuzzy parts of the inference chain are too easy to attack

• Is there a way to apply abstracted vocabularies that continues to generate provable security properties?
(2) Semantic information needs security

- Semantic data needs confidentiality and integrity
- How discoverable do you want to be?
- How can other systems interact with you without discoverability?
- Highly relevant for security semantics, but for all other kinds of semantics, too
Make provenance and authorization part of inference

• Results of inferences are generally only as trustworthy as the combination of trustworthiness of the inputs

• Need to preserve provenance of all data that go into inference

• Need to apply authorization calculus to all inferences — from fact-based to claim-based inference
Security semantics of inference results

- What are the disclosure/privacy requirements on data generated from inferences?
- Labeling with provenance may already disclose too much
- Hiding behind indirections can help (and simplify!)
Getting the communities to talk

• Security community ≠ Semantics community

• The problems are not new, but:

 • IoT often has complex multi-stakeholder security objectives

 • IoT needs semantic technology for wide-scale integration
Wrap-up