
An Abstract Application Layer
Interface to Transport Services

draft-trammell-taps-interface-01
Brian Trammell

TAPS — IETF 101 — Montreal — Tue 17 July 2018

�1

Interface - TAPS - B Trammell - IETF 102

Interface Design Principles (§3)
(a review)
We set out to define a single interface to a variety of transport
protocols to be used in a variety of application design patterns,
to enable applications written to a single API to make use of
multiple transport protocols in terms of the features they
provide, providing:

• explicit support for security properties as first-order
transport features;

• asynchronous connection, transmission, and reception;

• support for multistreaming and multipath transport
protocols; and

• atomic transmission of data, using application-assisted
framing and deframing where necessary.

"2

Interface - TAPS - B Trammell - IETF 101

Properties (related to Send() properties)

Security parameters

 3

Interface Diagram (as of -01)

Preconnection

Clone()

Connection

Clone() →

Send(MCtx,EOM) →
 Sent<>, Expired<>
Receive() →  
 Received<Data/Metadata>
 ReceivedPartial<>

Close() → Closed<>
Abort() → Aborted<>

Initiate() → Ready<>
Listen() → CReceived<>
Rendezvous() → RDone<>
Stop() → Stopped<>

Require() Prefer() Ignore() Avoid() Prohibit()

Endpoints
Local

Remote

Connection Group

Interface - TAPS - B Trammell - IETF 102

(non-editorial) changes since -00

• #201 Restructure Transport Properties

• #200 Rework Partial Sends and Receives

• #198 Message Receive Metadata

• #195 Ordering of API Events

• #181 Rework Interface Types

• #171 Batching Sends

"4

https://github.com/taps-api/drafts/pull/201
https://github.com/taps-api/drafts/pull/200
https://github.com/taps-api/drafts/pull/198
https://github.com/taps-api/drafts/pull/195
https://github.com/taps-api/drafts/pull/181
https://github.com/taps-api/drafts/pull/171

Interface - TAPS - B Trammell - IETF 102

(non-editorial) changes since -00

• #201 Restructure Transport Properties

• #200 Rework Partial Sends and Receives

• #198 Message Receive Metadata

• #195 Ordering of API Events

• #181 Rework Interface Types

• #171 Batching Sends

"4

https://github.com/taps-api/drafts/pull/201
https://github.com/taps-api/drafts/pull/200
https://github.com/taps-api/drafts/pull/198
https://github.com/taps-api/drafts/pull/195
https://github.com/taps-api/drafts/pull/181
https://github.com/taps-api/drafts/pull/171

Interface - TAPS - B Trammell - IETF 102

#201 Transport Parameters Rework

• All of the various ways to configure stacks (pre-selection,
post-selection, and per-send) are related, but were spread
throughout the document

• New approach: group all (non-security) parameters into into
Properties (new §12), attempt to reclassify them.

• Note: the authors do not think we have this right yet, 
but we do think it's less intentionally confusing than it was.

• Definitely needs reordering (order is kind of random)

• May need new / renamed axes / classifications.

• Preferences still expressed using Require(), Prefer(),
Avoid(), Prohibit(); send properties are bound to
MessageContext passed on Send().

"5

Interface - TAPS - B Trammell - IETF 102

#201: current property "axes"

• Data type

Boolean / Enumeration / Integer / Preference

• Scope

Preconnection / Connection / Message

• Classification

"6

Affected Aspects Path & Protocol
Selection Protocol Operation Control Flow

Immediate Selection Property Protocol Property Control Property

Intent
Interpreted

Le
ve

l o
f 

Ab
st

ra
ct

io
n

Interface - TAPS - B Trammell - IETF 102

Properties (1/3)

"7

Type Dep. Select post-
Select

per-
Send

12.3.1. Final bool ✓/?
12.3.2. Reliable Message Transfer pref ✓
12.3.3. Configure Reliability Per Message pref ✓
12.3.4. Reliable Transfer (Message) bool ↑ ✓
12.3.5. Preservation of Data Ordering pref ✓
12.3.6. Ordered bool ↑ ✓
12.3.7. Direction of communication enum ? ?
12.3.8. 0-RTT Establishment w/Idem.
Send

pref ✓
12.3.9. Idempotent bool ↑ ✓
12.3.10. Multistream in Group pref ✓
12.3.11. Excessive RTX Notification pref ✓
12.3.12. Exc. RTX Notification Threshold int ↑ ✓ ✓

protocol/
control prop.

Interface - TAPS - B Trammell - IETF 102

Properties (2/3)

"8

Type Dep. Select post-
Select

per-
Send

12.3.13. Soft Error Notification pref ✓
12.3.14. Checksum Coverage Control pref ✓
12.3.15. Checksum Coverage Length int ↑ ✓
12.3.16. Recv Checksum Requirement int ✓ ✓
12.3.17. Interface Instance / Type (enum,pref) ✓
12.3.18. PvD Instance / Type (enum,pref) ✓
12.3.19. Capacity Profile (intent) enum ✓ ✓ ✓
12.3.20. Congestion Control pref ✓
12.3.21. Niceness int ✓ ✓
12.3.22. Abort Timeout int ✓
12.3.23. Connection Group TX Scheduler enum ✓ ✓

protocol/
control prop.

Interface - TAPS - B Trammell - IETF 102

Properties (3/3)

"9

Type Dep. Select post-
Select

per-
Send

12.3.24. Max Idempotent Send Size int r/o
12.3.25. Max No-Frag Send Size int r/o
12.3.26. Max (non-partial?) Send Size int r/o
12.3.27. Max (non-partial?) Recv Size int r/o
12.3.28. PR Send Lifetime int 12.3.3. ✓

protocol/
control prop.

Interface - TAPS - B Trammell - IETF 102

Some Observations from the Editor
(+discussion)
• Calling these axes is a little misleading: they're not orthogonal

• We have only six distinct kinds of thing:

• Preference used for selection, scoped to preconnection, read-only after
connection.

• Property used to control how messages are sent, scoped to message
(boolean or integer, usually linked to selection preference).

• Property used to control protocol operation, scoped to preconnection +
connection (usually integer, e.g. sizes/timeouts), possibly also usable for
selection.

• Property used to inspect protocol operation, scoped to connection,
read-only (usually integer, e.g. buffer size).

• Enumeration/preference tuples for selecting interface/PvD.

• Intents, which can influence selection, configuration, scheduling, etc. at
a higher level.

"10

Interface - TAPS - B Trammell - IETF 102

#200 Partial Send and Receive

• API is organized around atomic write/read of messages

• (using application-supplied deframing when the underlying
transport doesn't do framing, see §8.4)

• But sometimes you have a message (or a real stream) that
won't fit into a buffer.

• Solution: partial read/write

• Introduce optional EOM parameter to Send(); calls with EOM =
false → still writing to a partial message identified by a given
MessageContext.

• ReceivedPartial<> event fires when a partial message is
received.

• Partial read/write boundaries are not preserved.

"11

Interface - TAPS - B Trammell - IETF 102

Open issue: API for idempotent Send
on establishment (#112 / #124)
• How does the application tell the stack that it wants to send some 0RTT data?

• Some tradeoffs here, but mainly a bikeshed.

• Option 1: as in #124, hold any data sent until an explicit Connection.Start() call.

• Send() before Start() is 0RTT if idempotent.

• Start() is always required, even if you don't know what 0RTT is.

• Option 3: 0RTT behavior is implied by 0RTT selection properties.

• When Initiate() is called and selects a 0RTT-capable stack, the actual
initiation is delayed slightly to wait for the first Send(), which is 0RTT if
idempotent.

• Note this makes racing 0RTT-capable and 0RTT-incapable stacks impossible.

• Option 3.5: as 3, but with a Preconnection.InitiateNow() to override the wait-for-
Send() behavior (e.g. for application protocols where the server sends first)

• Option 5: Add Preconnection.Send(), which initiates with 0RTT data.

"12

https://github.com/taps-api/drafts/issues/112
https://github.com/taps-api/drafts/pull/124

Interface - TAPS - B Trammell - IETF 102

Next steps
There are still some open issues:
github.com/taps-api/drafts/issues

"13

http://github.com/taps-api/drafts/issues

