An Abstract Application Layer
Interface to Transport Services
draft-trammell-taps-interface-01

Brian Trammell
TAPS — |[ETF 101 — Montreal — Tue 17 July 2018



Interface Design Principles (§3)
(a review)

We set out to define a single interface to a variety of transport
protocols to be used in a variety of application design patterns,
to enable applications written to a single API to make use of

multiple transport protocols in terms of the features they
provide, providing:

* explicit support for security properties as first-order
transport features;

* asynchronous connection, transmission, and reception;

* support for multistreaming and multipath transport
protocols; and

* atomic transmission of data, using application-assisted
framing and deframing where necessary.

Interface - TAPS - B Trammell - IETF 102 2



Interface Diagram (as of -01)

(related to Send() properties)
Require() Prefer() Ignore() Avoid() Prohibit()

Security parameters

Connection

Preconnection -
Initiate() » Ready<>

Listen() » CReceived<>
Rendezvous() » RDone<> )

Stop() = Stopped<> Sent<>, Expired<>

> Connection Group
Clone()

Receive() =~

Received<
Endpoints
Close() » Closed<>
Abort() » Aborted<>

Interface - TAPS - B Trammell - IETF 101 3



(non-editorial) changes since -00

e #201 Restructure Transport Properties

e #200 Rework Partial Sends and Receives
e #198 Message Receive Metadata

e #195 Ordering of API Events

e #181 Rework Interface Types

e #171 Batching Sends

Interface - TAPS - B Trammell - IETF 102 4


https://github.com/taps-api/drafts/pull/201
https://github.com/taps-api/drafts/pull/200
https://github.com/taps-api/drafts/pull/198
https://github.com/taps-api/drafts/pull/195
https://github.com/taps-api/drafts/pull/181
https://github.com/taps-api/drafts/pull/171

(non-editorial) changes since -00

e #201 Restructure Transport Properties
e #198 Message Receive Metadata
e #195 Ordering of API Events

e #181 Rework Interface Types
e #171 Batching Sends

Interface - TAPS - B Trammell - IETF 102 4


https://github.com/taps-api/drafts/pull/201
https://github.com/taps-api/drafts/pull/200
https://github.com/taps-api/drafts/pull/198
https://github.com/taps-api/drafts/pull/195
https://github.com/taps-api/drafts/pull/181
https://github.com/taps-api/drafts/pull/171

#2071 Transport Parameters Rework

e All of the various ways to configure stacks (pre-selection,
post-selection, and per-send) are related, but were spread
throughout the document

* New approach: group all (non-security) parameters into into
Properties (new §12), attempt to reclassify them.

* Note: the authors do not think we have this right yet,
but we do think it's less intentionally confusing than it was.

e Definitely needs reordering (order is kind of random)
e May need new / renamed axes / classifications.

 Preferences still expressed using Require(), Prefer(),
Avoid(), Prohibit(); send properties are bound to
MessageContext passed on Send().

Interface - TAPS - B Trammell - IETF 102 5



#201: current property "axes’

e Data type

Boolean / Enumeration / Integer / Preference
e Scope

Preconnection / Connection / Message

e (Classification

Path & Protocol

Affected Aspects Selection

Protocol Operation Control Flow

Immediate Selection Property

S

Protocol Property Control Property

Level of
Abstraction

Intent

Interpreted

Interface - TAPS - B Trammell - IETF 102 6



Properties (1/3)

protocol/
control prop.

Type Dep. Select post- per-
Select Send

12.3.1. Final
12.3.2. Reliable Message Transfer

12.3.3. Configure Reliability Per Message

12.3.4. Reliable Transfer (Message)
12.3.5. Preservation of Data Ordering
12.3.6. Ordered

12.3.7. Direction of communication
12.3.8. 0-RTT Establishment w/ldem.
12.3.9. Idempotent

12.3.10. Multistream in Group

12.3.11. Excessive RTX Notification
12.3.12. Exc. RTX Notification Threshold

Interface - TAPS - B Trammell - IETF 102 7



Properties (2/3)

protocol/
control prop.

Select post- per-

Select Send

Soft Error Notification pref

Checksum Coverage Control pref v

Checksum Coverage Length int T v
Recv Checksum Requirement int v v
Interface Instance / Type (enum, pref) v

PvD Instance / Type (enum,pref) v

Capacity Profile (intent) enum v v v
Congestion Control pref v

Niceness int v v
Abort Timeout int v

Connection Group TX Scheduler enum v v

Interface - TAPS - B Trammell - IETF 102 8



Properties (3/3)

protocol/
control prop.

Select post- per-
Select Send

12.3.24. Max Ildempotent Send Size

12.3.25. Max No-Frag Send Size
12.3.26. Max (non-partial?) Send Size
12.3.27. Max (non-partial?) Recv Size
12.3.28. PR Send Lifetime

Interface - TAPS - B Trammell - IETF 102 9



Some Observations from the Editor
(+discussion)

e Calling these axes is a little misleading: they're not orthogonal
e \We have only six distinct kinds of thing:

e Preference used for selection, scoped to preconnection, read-only after
connection.

* Property used to control how messages are sent, scoped to message
(boolean or integer, usually linked to selection preference).

* Property used to control protocol operation, scoped to preconnection +
connection (usually integer, e.g. sizes/timeouts), possibly also usable for
selection.

* Property used to inspect protocol operation, scoped to connection,
read-only (usually integer, e.g. buffer size).

 Enumeration/preference tuples for selecting interface/PvD.

e Intents, which can influence selection, configuration, scheduling, etc. at
a higher level.

Interface - TAPS - B Trammell - IETF 102 10



Interface -

#200 Partial Send and Recelve

API is organized around atomic write/read of messages

* (using application-supplied deframing when the underlying
transport doesn't do framing, see §8.4)

But sometimes you have a message (or a real stream) that
won't fit into a buffer.

Solution: partial read/write

* |Introduce optional EOM parameter to Send(); calls with EOM =

false » still writing to a partial message identified by a given
MessageContext.

e ReceivedPartial<> event fires when a partial message is
received.

Partial read/write boundaries are not preserved.

TAPS - B Trammell - IETF 102 11



Open issue: API| for idempotent Send
on establishment (#112 / #124)

e How does the application tell the stack that it wants to send some ORTT data?

* Some tradeoffs here, but mainly a bikeshed.

* Option 1: as in #124, hold any data sent until an explicit Connection.Start() call.
e Send() before Start() is ORTT if idempotent.
e Start() is always required, even if you don't know what ORTT is.

* Option 3: ORTT behavior is implied by ORTT selection properties.

e When Initiate() is called and selects a ORTT-capable stack, the actual
initiation is delayed slightly to wait for the first Send(), which is ORTT if
idempotent.

* Note this makes racing ORTT-capable and ORTI-incapable stacks impossible.

Option 3.5: as 3, but with a Preconnection.InitiateNow() to override the wait-for-
Send() behavior (e.g. for application protocols where the server sends first)

Option 5: Add Preconnection.Send(), which initiates with ORTT data.

Interface - TAPS - B Trammell - IETF 102 192


https://github.com/taps-api/drafts/issues/112
https://github.com/taps-api/drafts/pull/124

Next steps

There are still some open issues:
github.com/taps-api/drafts/issues

Interface - TAPS - B Trammell - IETF 102

Filters « isissue is:open label: AP Labels Milestones
E3 cClear current search query, fiters, and sorts
@ 20 0pen v 72 Closed Author « Labels « Projects « Milestones -

=)

) Clones and entanglement API

#202 openad 15 days 290 by gorrytak ot?-02

1 Adjust status once it's clear... AR

#1592 opened on Jun & Dy mwelr

) What is the point of the *Closing” state? AP (22T

#182 openad on Nay 27 by tipauly ott-01 (Nostresd)

) Privacy considerations section APl implementation

177 cpened on May 98 by Beitras

) Dealing with threads and concurrency APl implementation

F180 cpened on Mt 78 Dy aSventurslosp

@ API needs a way to cancel Preconnection.Listen() APt implementaticn [reidy for taxt

#157 opened on Mar 22 by JonathanLennas

) API needs a way to know that Close() or Abort() are done APY implementaticn [faady foe text

#1568 cpened on M 22 By Josathanlenndx

1) Need relative ordering of APl events AP Implementation [ready for text

#1155 cpened on N 22 By Josamhanlesncs

1 Add Defivered event AM

#1561 opened on Mar 21 by britram

T Add Unidirectional Streams for Multicast / Source and Sink support AP isplementaticn [Torr)

#150 cpened on Nar 21 by brivvam

) “application's expectation of the dominating traffic pattern for" AP

#142 cpened on Nar 11 by gorryfar ot!-0! Montrea)

1) APL: How to specify idempotent data? APl Eliae)

#112 opened on Feb 27 by csperiing

) Evaluate the applicability of §6.3 to ICE-like protocols APl

#103 opened on Feb 27 by beitram letf-01 (Montreal)

1) Be explicit about when name resolution occurs AR

702 operwd on Feb 27 by britram

) AP1 Section 5.2: Discuss types of Intents we want to standardise AP

S0 cpened on Feb 21 By gornyfar

@ Section 5.2.3 - Can the communicated Intents be profiles of abstract intents? AM [0

#50 cpened on Feb 21 by goeryfair

() API section 5.1 no example of the “transport-agnostic” mode APl

50 cpened on Feb 21 By gorryfar

) Do we need to make state storage explicit in the architecture and API? AWM Architecture

#45 ocpened on Feb 14 by britram Wtf-02

) Path Selection Properties vs. Connection Migration and Multipath AP

#38 cpened on Feb 12 by philsbin wtt-01 (Montread)

@ Make some choices about §5.2.1 Transport Selection Parameters AP [liuae)

17 operwd on Feb 12 by betram

13

Assignee «

U

-y


http://github.com/taps-api/drafts/issues

