
RACK: a time-based fast loss recovery
Draft-ietf-tcpm-rack-04 updates

Yuchung Cheng
Neal Cardwell

Nandita Dukkipati
Priyaranjan Jha

Google

tcpm IETF 102, July 2018

https://tools.ietf.org/html/draft-ietf-tcpm-rack-04

What’s RACK (Recent ACK)?

Time-based loss inferences instead of packet or sequence
counting

Conceptually...
● Every sent packet has a timer
● All timers are constantly adjusted based on most

recent RTT sample
● A packet is retransmitted after RTT + reo_wnd

● RACK is about implementing this w/ one timer per
connection and ACK events

P1

P2

Retransmit P1

Expect ACK of P1
by then … wait
RTT/4 in case P1
was reordered

SYN

SYN/ACK

ACK

SACK of P2

ACK of P1/P2

New section: reordering detection

Key heuristic: ACKs that indicate out-of-order data sequence delivery, e.g. D/SACK

RACK.fack // highest sequence s/acked (Forward ACK)

RACK_detect_reordering():
 For each Packet newly acknowledged cumulatively or selectively:
 If Packet.end_seq > RACK.fack:
 RACK.fack = Packet.end_seq
 Else if Packet.end_seq < RACK.fack AND
 Packet.retransmitted is FALSE:
 RACK.reord = TRUE
 For each Packet covered by the DSACK option:
 If Packet.retransmitted is TRUE:
 RACK.reord = TRUE

New section: design rationale for reordering
tolerance

Last meeting: big concerns about better TCP reordering tolerance allowing reckless
network reordering

Excessive reordering hurts end to end performance:
 1. Host stack: high CPU cost by breaking GRO and increasing #ACKs
 2. Congestion control: assumes feedbacks from same bottleneck
 3. Loss recovery: large reordering window causes slower loss recovery

RACK is designed to tolerate small reordering on slightly diverse paths (router
parallelism or L2 retransmission)

RACK reordering window mandates
<verbatim>
To accomplish this RACK places the following mandates on the reordering window:

1. The initial RACK reordering window SHOULD be set to a small fraction of the round-trip time.

2. If no reordering has been observed, then RACK SHOULD honor the classic 3-DUPACK rule for initiating fast
recovery. One simple way to implement this is to temporarily override the reorder window to 0.

3. The RACK reordering window SHOULD leverage Duplicate Selective Acknowledgement (DSACK) information
[RFC3708] to adaptively estimate the duration of reordering events.

4. The RACK reordering window MUST be bounded and this bound SHOULD be one round trip.
</verbatim>

https://tools.ietf.org/html/rfc3708

RACK reordering window computation

Respects mandates, to adapt to observed level of reordering (within careful bounds).

If RACK.reord is FALSE:
 If in loss recovery: /* If in fast or timeout recovery */
 RACK.reo_wnd = 0
 Return
 Else if RACK.pkts_sacked >= RACK.dupthresh:
 RACK.reo_wnd = 0
 return
RACK.reo_wnd = RACK.min_RTT / 4 * RACK.reo_wnd_incr
RACK.reo_wnd = min(RACK.reo_wnd, SRTT)

(Section 6.2, Step 4)

Progress in Linux implementation

Linux 4.18 fully implements RACK/TLP

1. On by default
2. [RFC6675] (dupthresh-based) recovery is disabled

Linux loss recovery heuristics reduced from 10 to 2 (RACK/TLP, F/RTO)

RACK/TLP algorithm development is now concluded (no major work planned)

https://tools.ietf.org/html/rfc6675

