Making TCP faster and cheaper for
applications

Soheil Hassas Yeganeh

IETF 102 tcpm

Google

Sender

Receiver

Application

Buffer
allocation

Copy on
Send

Kernel

Thread
Affinity

=2
=2

NIC

Per-Packet

Overheads

Application

Buffer
allocation

Copy on
Receive

Kernel

Thread
Affinity

=2
=2

Per-Packet

NIC

Google

Overheads

TCP bottlenecks in the wild, beyond congestion control

Google

TCP on emerging platforms should to be efficient, high-throughput and

low-latency.
Several bottlenecks beyond protocol and congestion control:

Copies upon send and receive are expensive.

Userspace and kernel processes handling the same socket can be
scheduled on different CPUs.

Userspace threads can be woken up before they can actually do useful
work.

System call overheads after recent security mitigations.

TCP Transmit ZeroCopy

- Implemented by Willem de Bruijn
- Enabled on a socket using setsockopt(SO_ZEROCOPY).
- Data sent via sendmsg(data, MSG_ZEROCOPY) system call.

- Packets (e.g., skbuffs in Linux) keep references to the data.
There are some exceptions. We will discuss this in caveats.

blockl

skbl skb?

block3

sendmsg(iovs) \\\\\\\\\\h___—’//////
» TCP

iovs

Google

TCP Transmit ZeroCopy

- Return value of sendmsg(MSG_ZEROCOPY) is the identical to a normal send.

- A sequential ID assigned to each successful sendmsg(MSG_ZEROCOPY).

- When all of the SKBs for a sendmsg #ID are freed, userspace is notified (using
the socket's error queue in Linux).

- Data must remain unmodified while an skb points to it, otherwise undefined
behavior.

Google

TCP Transmit ZeroCopy

- Saves a copy.
- Adds extra notification processing.

- Has more overheads for small sends, because copy 1B is much cheaper than
processing a release notification.

- We observe 10%+ efficiency gains of large sends and 20%+ memory BW
savings.

Google

send: release:

iov[0] .base = blockl; do {
iov[0].iov_len = blockl_size; ret = recvmsg(fd, &msg,
iov[1l].base = block2 MSG_ERRQUEUE)
iov[1l].iov_len = blockZ_size; 1 while (ret < 0 && errno == EINTR) ;
msghdr hdr; if (ret < 0) { // handle error
hdr .msg_diov = dov; return;
hdr .msg_iovlen = 2; 1
C for (cmsghdr cm in msg) {
do { if (IsZeroCopyl(cm)) {
r = sendmsg(fd, &msghdr, auto serr = (sock_extended_err¥*)
MSG_ZEROCOPY) ; CMSG_DATA(cm) ;
} while (r < 0 && errno == EINTR) ; uint32 lo = serr->ee_info;
if (ret < 0) { // handle error uint32 hi = serr->ee_data;:
return; for (uint32 i=lo; di<=hi; ++1i) {
1 FreeBlock(zcopy_blocks[il])
vector<...> blocks; }
for (i = 0; 41 < 3 && r > 0; ++1) { 1
blocks.push_back(iov[i]); 1
if (r < dov([i].diov_len) break;
r -= dov[i].diov_len;
] this code is simplified and has to be
zcopy_blocks[id++] = blocks; synchronized for multi-threaded app.

Google

TCP Transmit ZeroCopy

- We do not release packets on SAck due to reneging.
- We do not release packets on Ack, because a copy of a packet can sit in the end

host:
- Aretransmitted copy maybe sitting in the Qdiscs.
- Data can be released ONLY WHEN the packet is not needed anywhere in the
kernel.
- For the same reason, release signals can be out of order.
- We have packets 1.. N on TCP's transmit queue.
- Packet #1 is spuriously transmitted, and sitting in the qdisc.

- Wereceive ack for packet #N -> Release packets #2..#N.
- Packet #1 is transmitted -> Release packet #1.

Google

TCP INQ

Google

TCP knows exactly how much data is available to read at time T.
But, applications do not have that information to allocate buffers optimally.

Applications can use:
- ioctl(SIOCINQ) aka FIONREAD.

But, it's one extra syscall per read, and remember syscalls are now more
expensive.

Linux now communicates the remaining bytes available to read from TCP:

// read 1024 bytes, and kernel tells the app there is 64KiB more data to read.
recvmsg(fd, {..., len=1024, cmsg={TCP_INQ, 65536}}, 0) = 1024

3% to 5% more efficient for small and large RPCs.

Thread Wakeup

Google

TCP/Kernel notifies one or more pollers when there is an event on an FD the
poller is subscribed to.
By default, kernel sends a notification every time we add something to the
receive queue of a socket.
Applications, on the other hand, usually process data in frames:

- Until a P bytes of payload is not read, no work can be done.

2 alternatives to lower wake ups:

- Kernel parses frames and infers P. This wouldn't work for encrypted streams.
- Userspace parses frame header and uses P as the low watermark. It's tricky to get right due to
buffer and memory autotuning in TCP.

Using the second approach we see significantly less wakeups for large frames.

Thread Affinity

- TCP tries to process packets on the same CPU where the user thread is
expected to read/write the data.
- See receive flow steering as an example.

- The heuristics are very simple:
- Set the core ID of the socket when recvmsg and sendmsg are called.
- TCP used to set the core ID on poll, which we removed.

- These heuristics won't work without orchestration:

- Scheduler can move user-space threads around, the previous user space thread may get blocked,
pinning doesn't work for all processes, ...

- Orchestrating userspace and kernel affinities we observe 10%+ gains in

efficiency and latency:
- Tryto process TCP events on the same core both in userspace and the kernel.

Google

Lessons Learnt

- Optimizing TCP's core is necessary, but it's not sufficient to provide the ultimate
performance on emerging platforms.

- TCP's performance depends vastly on how TCP is used.
- There is no way to guarantee affinity without user-space orchestration.
- We cannot cook large TSOs if application doesn't provide enough backlog.
- Moving away from historical artifacts can provide large gains.
- We can always revisit syscall copies, notification methodes, ...
- Heuristics in TCP should be guided by how applications use TCP.

- Setting RFS core on epoll would hurt performance, when we have a single poller.
- To guide optimizations, we should evangelize old and new TCP metrics (SNMPs,
Tx and Rx timestamps, TCP chronos, ...):
- nstat, ss, and kernel timestamps are your friends.

- Linux perf tools and flame graphs are immensely helpful.
- ftrace and ebpf are very useful for debugging thread affinity and latency.

Google

https://perf.wiki.kernel.org/index.php/Main_Page
http://www.brendangregg.com/flamegraphs.html

