
Making TCP faster and cheaper for
applications

Soheil Hassas Yeganeh

IETF 102 tcpm

NIC

Application

Kernel

Thread
Affinity

Copy on
Send

Per-Packet
Overheads

Notifications

NIC

Application

Kernel

Thread
Affinity

Copy on
Receive

Per-Packet
Overheads

Notifications

Sender Receiver

Buffer
allocation

Buffer
allocation

TCP bottlenecks in the wild, beyond congestion control

- TCP on emerging platforms should to be efficient, high-throughput and
low-latency.

- Several bottlenecks beyond protocol and congestion control:
- Copies upon send and receive are expensive.
- Userspace and kernel processes handling the same socket can be

scheduled on different CPUs.
- Userspace threads can be woken up before they can actually do useful

work.
- System call overheads after recent security mitigations.

TCP Transmit ZeroCopy
- Implemented by Willem de Bruijn
- Enabled on a socket using setsockopt(SO_ZEROCOPY).
- Data sent via sendmsg(data, MSG_ZEROCOPY) system call.
- Packets (e.g., skbuffs in Linux) keep references to the data.

- There are some exceptions. We will discuss this in caveats.

block1

iovs

block2

block3

TCP

skb1 skb2

sendmsg(iovs)

TCP Transmit ZeroCopy

- Return value of sendmsg(MSG_ZEROCOPY) is the identical to a normal send.
- A sequential ID assigned to each successful sendmsg(MSG_ZEROCOPY).
- When all of the SKBs for a sendmsg #ID are freed, userspace is notified (using

the socket's error queue in Linux).

- Data must remain unmodified while an skb points to it, otherwise undefined
behavior.

TCP Transmit ZeroCopy

- Saves a copy.
- Adds extra notification processing.

- Has more overheads for small sends, because copy 1B is much cheaper than
processing a release notification.

- We observe 10%+ efficiency gains of large sends and 20%+ memory BW
savings.

iov[0].base = block1;
iov[0].iov_len = block1_size;
iov[1].base = block2
iov[1].iov_len = block2_size;
msghdr hdr;
hdr.msg_iov = iov;
hdr.msg_iovlen = 2;
...
do {
 r = sendmsg(fd, &msghdr,
 MSG_ZEROCOPY);
} while (r < 0 && errno == EINTR);
if (ret < 0) { // handle error
 return;
}
vector<...> blocks;
for (i = 0; i < 3 && r > 0; ++i) {
 blocks.push_back(iov[i]);
 if (r < iov[i].iov_len) break;
 r -= iov[i].iov_len;
}
zcopy_blocks[id++] = blocks;

do {
 ret = recvmsg(fd, &msg,
 MSG_ERRQUEUE)
} while (ret < 0 && errno == EINTR);
if (ret < 0) { // handle error

return;
}
for (cmsghdr cm in msg) {
 if (IsZeroCopy(cm)) {
 auto serr = (sock_extended_err*)
 CMSG_DATA(cm);
 uint32 lo = serr->ee_info;
 uint32 hi = serr->ee_data;

for (uint32 i=lo; i<=hi; ++i) {
 FreeBlock(zcopy_blocks[i])
 }
 }
}

send: release:

this code is simplified and has to be
synchronized for multi-threaded app.

TCP Transmit ZeroCopy

- We do not release packets on SAck due to reneging.
- We do not release packets on Ack, because a copy of a packet can sit in the end

host:
- A retransmitted copy maybe sitting in the Qdiscs.

- Data can be released ONLY WHEN the packet is not needed anywhere in the
kernel.

- For the same reason, release signals can be out of order.
- We have packets 1 .. N on TCP's transmit queue.
- Packet #1 is spuriously transmitted, and sitting in the qdisc.
- We receive ack for packet #N -> Release packets #2..#N.
- Packet #1 is transmitted -> Release packet #1.

TCP INQ

- TCP knows exactly how much data is available to read at time T.
- But, applications do not have that information to allocate buffers optimally.
- Applications can use:

- ioctl(SIOCINQ) aka FIONREAD.

- But, it's one extra syscall per read, and remember syscalls are now more
expensive.

- Linux now communicates the remaining bytes available to read from TCP:

// read 1024 bytes, and kernel tells the app there is 64KiB more data to read.
recvmsg(fd, {..., len=1024, cmsg={TCP_INQ, 65536}}, 0) = 1024

- 3% to 5% more efficient for small and large RPCs.

Thread Wakeup

- TCP/Kernel notifies one or more pollers when there is an event on an FD the
poller is subscribed to.

- By default, kernel sends a notification every time we add something to the
receive queue of a socket.

- Applications, on the other hand, usually process data in frames:
- Until a P bytes of payload is not read, no work can be done.

- 2 alternatives to lower wake ups:
- Kernel parses frames and infers P. This wouldn't work for encrypted streams.
- Userspace parses frame header and uses P as the low watermark. It's tricky to get right due to

buffer and memory autotuning in TCP.

- Using the second approach we see significantly less wakeups for large frames.

Thread Affinity

- TCP tries to process packets on the same CPU where the user thread is
expected to read/write the data.

- See receive flow steering as an example.

- The heuristics are very simple:
- Set the core ID of the socket when recvmsg and sendmsg are called.
- TCP used to set the core ID on poll, which we removed.

- These heuristics won't work without orchestration:
- Scheduler can move user-space threads around, the previous user space thread may get blocked,

pinning doesn't work for all processes, ...

- Orchestrating userspace and kernel affinities we observe 10%+ gains in
efficiency and latency:

- Try to process TCP events on the same core both in userspace and the kernel.

Lessons Learnt
- Optimizing TCP's core is necessary, but it's not sufficient to provide the ultimate

performance on emerging platforms.
- TCP's performance depends vastly on how TCP is used.

- There is no way to guarantee affinity without user-space orchestration.
- We cannot cook large TSOs if application doesn't provide enough backlog.

- Moving away from historical artifacts can provide large gains.
- We can always revisit syscall copies, notification methods, ...

- Heuristics in TCP should be guided by how applications use TCP.
- Setting RFS core on epoll would hurt performance, when we have a single poller.

- To guide optimizations, we should evangelize old and new TCP metrics (SNMPs,
Tx and Rx timestamps, TCP chronos, ...):

- nstat, ss, and kernel timestamps are your friends.
- Linux perf tools and flame graphs are immensely helpful.
- ftrace and ebpf are very useful for debugging thread affinity and latency.

https://perf.wiki.kernel.org/index.php/Main_Page
http://www.brendangregg.com/flamegraphs.html

