
Trusted Execution
Environment Provisioning

(TEEP) WG
IETF 101, Tuesday, July 17, 2018

Chairs:

Dave Thaler

Nancy Cam-Winget

1

Note Well

This is a reminder of IETF policies in effect on various topics such as patents or code of conduct. It is only meant to point you in the
right direction. Exceptions may apply. The IETF's patent policy and the definition of an IETF "contribution" and "participation" are set
forth in BCP 79; please read it carefully.

As a reminder:

• By participating in the IETF, you agree to follow IETF processes and policies.

• If you are aware that any IETF contribution is covered by patents or patent applications that are owned or controlled by you or your
sponsor, you must disclose that fact, or not participate in the discussion.

• As a participant in or attendee to any IETF activity you acknowledge that written, audio, video, and photographic records of meetings
may be made public.

• Personal information that you provide to IETF will be handled in accordance with the IETF Privacy Statement.

• As a participant or attendee, you agree to work respectfully with other participants; please contact the ombudsteam
(https://www.ietf.org/contact/ombudsteam/) if you have questions or concerns about this.

Definitive information is in the documents listed below and other IETF BCPs. For advice, please talk to WG chairs or ADs:
•BCP 9 (Internet Standards Process)
•BCP 25 (Working Group processes)
•BCP 25 (Anti-Harassment Procedures)
•BCP 54 (Code of Conduct)
•BCP 78 (Copyright)
•BCP 79 (Patents, Participation)
•https://www.ietf.org/privacy-policy/ (Privacy Policy)

2

https://www.ietf.org/contact/ombudsteam/
https://www.ietf.org/privacy-policy/

Administrative Tasks

Bluesheets

We need volunteers to be:

• Two note takers

• One jabber scribe

Jabber: xmpp:teep@jabber.ietf.org?join

MeetEcho: https://www.meetecho.com/ietf101/teep

Etherpad: https://etherpad.tools.ietf.org/p/notes-ietf-101-teep

3

Agenda

1. Agenda bashing, Logistics -- Chairs (5 mins)

2. Review of charter milestones -- Chairs (5 mins)

3. Architecture (draft-ietf-teep-architecture-00)– Ming & Hannes (30 mins)

4. Open Trust Protocol (draft-ietf-teep-opentrustprotocol-01) – Ming (30 mins)

5. TEEP Hackathon report – Dave Thaler (20 mins)

6. SGX Overview and Impact on TEEP – David Wheeler (30 mins)

7. AOB

4

https://datatracker.ietf.org/doc/draft-ietf-teep-architecture/
https://datatracker.ietf.org/doc/draft-ietf-teep-opentrustprotocol/

Milestones (are we on target?)

Date Milestone

Mar 2018 Adopt an Architecture document

Mar 2018 Adopt a solution document

Dec 2018 Begin WGLC for Architecture document

Apr 2019 Progress Architecture document to the IESG for publication

Jul 2019 Begin WGLC for Solution document

Dec 2019 Progress Solution document to the IESG for publication

5

TEEP Architecture Draft
https://tools.ietf.org/html/draft-ietf-teep-architecture-00

Mingliang Pei, Hannes Tschofenig, Andrew Atyeo, Dapeng Liu

IETF#102

https://tools.ietf.org/html/draft-ietf-teep-architecture-00

Document Status

• Submitted WG draft on 07/02/2018

– Received a good list of comments in mailing list

• It took largely the architecture extracted from the WG
approved OTrP draft

• Addressed some comments from the mailing list on OTrP into
this draft

• Started to address the feedback from the last WG

IETF102 2

Current Document Structure

• Introduction

• Terminology

• Scope and Assumptions

• Use Cases (Payment, Authentication, IoT, Confidential Cloud Computing)

• Architecture

• Agent

• Attestation

• Security Consideration

IETF102 3

Changes in v0

• Terminology Unification
– Secure Boot Module vs. Trusted Firmware

– Service Provider vs. App Developer

• Added a diagram about “User Experience”

• Started to make Trusted Firmware verification optional

• Made transport support as a requirement

• Made assumption to support multiple TEEs

• Made TA binary distribution by a Client Application a goal

IETF102 4

OPEN ISSUES

IETF102 5

Trusted Firmware

• Agreement in the group to make trusted firmware functionality
optional since it is TrustZone-specific

• Still lots of left-over text in the document present

• Clean-up in next version

IETF102 6

Trusted App Distribution

• Two modes:

– TA binary bundled with the Client Application

– TA distributed by TAM

• Challenges with first approach is

– Passing device or TA instance specific data requires real-time
interaction with a TAM. This functionality is in use today.

– Client Application is not authorized to query TEE device state. Who is
authorized to update a TA in the future? What would be the Security
Domain?

IETF102 7

Multiple TEEs vs. Single TEE

• The original OTrP assumes that device is equipped only with a single
TEE.

• One TEE per device deployment is common today.

• Multiple TEE support was asked. Use case unclear.

• Technical issue: How are messages routed to the correct TEE?

– TEEP Agent is responsible to get a TEE identifier, and connects to the right TEE

– It implies that TEEP Agent needs to parse the TAM messages or some header

– The TEE identifier is better to be verifiable as the actual intent

IETF102 8

How are messages routed to the correct TEE?
Example below for heterogeneous TEE types in same device

Subsequent messages from TAM are sent in transport session
associated with the correct TEE

TAM

REE

TEE 1
(Type A)

TEE 2
(Type B)

OTrP
Client 1

OTrP
Client 2

Facilitator

1: Download rich
app + metadata
(e.g., manifest)

2: “Rich app
depends on TA X
in a Type A TEE”

Rich app or
installer

IETF 102 - TEEP WG 9

Every Rich App Talks to TAM?

• Dave Thaler: The document seems to assume that every rich app
that needs a TA, also needs to have code to talk to a TAM.
– I agree that's one possible implementation but the architecture should not

require that.
– An alternative implementation would be where the REE OS (e.g., the app

store installer) contains code for communicating with TAM(s) using data in
(for example) the rich app's manifest, and the rich app has no need to run
until the TA is already installed. The installer/communicator is a rich app of
a sort, but it's a different one from the client app that depends on the TA.

• In my opinion, the arch doc should not require that it's the same
app, but should certainly allow it to be.

IETF102 10

OTrP Roles & Terminology
• The term “Agent” is confusing since as used in the doc, the Agent does

not understand OTrP, just transport: “facilitator”? “connector”?

• Facilitator might be in rich app or app installer or whatever else

IETF 102 - TEEP WG 11

Transport server Facilitator

Device

REE TEE

OTrP Client

TAM

OTrP server

OTrP session

Transport session

API calls

Service Provider Terminology

• Service Provider: An entity that wishes to supply Trusted Applications to
remote devices.

• The architecture document also says:
– A Device Administrator or Service Provider of the device needs to determine

security-relevant information of a device before provisioning the TA to the device
with a TEE.

– A TEE in a device needs to determine whether a Device Administrator or a
Service Provider that wants to manage an TA in the device is authorized to
manage applications in the TEE.

• Dave Thaler: If the Device Admin is responsible for controlling what apps
run in the TEE on an IoT class device (e.g., in a factory), is the Device
Administrator just another type of SP, or are those terms disjoint?

IETF102 12

Keys

IETF102 13

Used for
attestation

(Not present
in SGX)

Used for
Software
signing

Root of Trust vs. Trust Anchor
• Attempt to differentiate the certificates usage with different terminology.

• David Wheeler proposed terminology for the two terms.

• Andrew proposed to remove trust anchor term and to use terms like “TAM root CA
certificate store”.

IETF102 14

• Trust Anchor: A trust anchor is public asymmetric key, preferably contained in a certificate that

represents a trusted entity to a device. This public key may be used by the holder of the
corresponding private key to sign other certificates, thereby communicating the signed certificate
may also be trusted. The trust anchor is usually embedded in a device or configured by a TAM and
used by the device to validate the trust of a remote entity by verifying that entity's certificate is
signed by a trust anchor. Trust anchors must be stored in a way that prevents or strongly resists
modification by unauthorized software and hardware adversaries. An example of a trust anchor is
the public key of a TAM or SP which is "pinned" or securely stored inside the device, and that trust
anchor is used like a CA certificate to validate the trust in other keys/certificates. A trust anchor may
be viewed by both trusted and untrusted entities on the device, But may only be modified or deleted
by a trusted entity.

• Root-of-Trust Key: A device-unique key generated at device manufacturing or at TEE

provisioning, which is securely stored and only accessible to the TEE. The Root-of-Trust Key is used
for attestation signing which proves the signed message originated or was approved by the TEE, and

may be trusted to the same degree as the TEE.IETF102 15

Root of Trust vs. Trust Anchor (cont.)

Security Domain Concept

16

• Currently one level security domain hierarchy
assumed.

• Purpose of the domain is for isolation of
resources. TA in one SD cannot access
resources of a TA in another SD.

• Up to TEE’s implementation of isolation and
access control.

• Definition of security domain not available
and use cases unclear.

• Implication of SD concept is in the message
exchange that requires messages to create
and delete security domains.

IETF102

TEEP Open Trust Protocol (OTrP) Draft
draft-ietf-teep-opentrustprotocol-01.txt

Mingliang Pei (mingliang_pei@symantec.com)

Andrew Atyeo (andrew.atyeo@intercede.com)

Nick Cook (nicholas.cook@arm.com)

Minho Yoo (paromix@sola-cia.com)

Hannes Tschofenig (hannes.tschofenig@arm.com)

IETF 102th, Montreal

draft-ietf-teep-opentrustprotocol-01.txt
mailto:mingliang_pei@symantec.com

Agenda

• Draft status update

• Main changes in the last version

• TEEP architecture and protocol implementation mapping

• Gap discussion and future work

OTrP - IETF 102 TEEP WG

Status Update

• WG draft approved 4/26/2018

– Draft name change to draft-ietf-teep-opentrustprotocol v00

– Minor changes from the previously draft discussed in IETF 101 WG

• Updated version v01

– Split the draft into a architecture draft and the updated protocol draft

– Architecture draft v00 was made more general, incorporating
discussions in IETF 101 and mailing list

OTrP - IETF 102 TEEP WG

OTrP Design Quick Refresh

• Original TEEP architecture and protocol foundation before split

• Covers protocol part that implements TEEP architecture

• A message protocol

– JSON-based messaging between TAM and TEE

• Use asymmetric keys and certificates for device and TAM attestation

• An OTrP Agent in REE is used to facilitate communication between a
device TEE and a TAM

• Support a transport binding

OTrP - IETF 102 TEEP WG

Command Descriptions

GetDeviceState • Retrieve information of TEE device state including SD and TA associated to a TAM

Command Descriptions

CreateSD • Create a SD in the TEE associated with a TAM

UpdateSD • Update a SD or associated SP information

DeleteSD • Delete a SD or SD related information in the TEE associated with a TAM

Command Descriptions

InstallTA • Install a TA in a SD associated with a TAM

UpdateTA • Update a TA in a SD associated with a TAM

DeleteTA • Delete a TA in a SD associated with a TAM

 Remote Device Attestation

 Security Domain Management

 Trusted Application Management

OTrP Operations and Messages

OTrP Message Exchange via an OTrP Agent

• An OTrP Agent handles how to interact with a TEE from a REE

• Most commonly developed and distributed by TEE vendor

TAM

OTrP - IETF 102 TEEP WG

OTrP JSON Message Format and Convention

{

“<name>[Request | Response]”: {

"payload": "<payload contents of <name>TBS[Request | Response]>",

"protected":"<integrity-protected header contents>",

"header": <non-integrity-protected header contents>,

"signature":"<signature contents>"

}

}

For example:

- CreateSDRequest

- CreateSDResponse

OTrP - IETF 102 TEEP WG

Changes from the prior version

• Moved general architecture specification into the architecture draft

– Adjusted introduction part to link with the architecture draft

– Referred to Architecture draft to definitions and terminologies

– Referred to Architecture doc for general architecture requirements

– Retained the most part of entity relationship, certificate types, and OTrP Agent as
part of Architecture to OTrP mapping reference

• No changes in API and messages

• Changed to make Trusted Firmware (TFW) check optional

– TAM will decide whether a TEE acceptable in the absence of TFW signature

• Terminology update

– Use TFW in all occurrences of Secure Boot Module (SBM)
OTrP - IETF 102 TEEP WG

TEEP Architecture to Implementation Mapping

• Mostly mapped implementation except a few new architecture
expansion requests from mailing list

• Multiple TEE support

– TEEP architecture proposes to expand single active TEE in a device to allow
multiple full TEEs

• TA binary distribution by a Client Application

– OTrP currently requires TA binary be distributed by a TAM and sent in an
encrypted form

– Issue in authorizing a Client Application and TA personalization data

• Use of an Agent for communication between a TEE and a TAM

– Discussion around making it optional
OTrP - IETF 102 TEEP WG

Gap Discussion and Future Work

• Multiple TEE support

– TEE identifier needs to be made visible to an OTrP Agent

– OTrP Agent isn’t just relaying anymore; add routing capability to a target TEE

– Other options

• TA binary distribution by a Client Application

– Installation can be addressed
• The signer of TA is trusted by a TEE

– Issues with SD update and TA update in future

– Issues to send device specific data that a TA needs to use

• Communication between a TEE and TAM might be facilitated by OS

– A Rich App may not need to call OTrP Agent itself
OTrP - IETF 102 TEEP WG

Thank you!

Q&A

OTrP - IETF 102 TEEP WG

Message Format Negotiation

• A Client Application may query a device for its preferred message
format

• A Client Application triggers TAM to send messages in a preferred
format

• Use a default message format

OTrP - IETF 102 TEEP WG

IETF 102
Hackathon Report

Dave Thaler

1

10 issues found starting implementation (1/4)

1. Section 6.5 explains that the TAM needs to receive a list of one or more TA’s that are
requested to be installed (S6.5.1 point 1A). However, no message is defined for doing
so, which prevents interoperability. I think this message needs to be generated by
the TEE (not the rich app),
for reasons I will explain in #3 below.

2. Section 6.5 explains that the TAM needs to keep track of TAs installed
on all devices, even though its list might be wrong. This has a scalability
issue. Instead, I think there should be no such requirement.

• See David Wheeler’s presentation for why this requirement is problematic anyway

3. Putting my issue #1 and issue #2 together means there’s an extra round trip that is
unnecessary. 6.5 says the TAM receive a list of TAs needed, and then the TAM just
goes back and asks what is installed, just to get a list of what needs to be
installed. This is unnecessary, the TEE can just send a list of one or more TAs that need
to be installed and aren’t already. Hopefully this explains why I said in issue #1 above
why I think the message needs to be generated by the TEE.

2

Connection model #1: what the draft says

3

TAM

App store
installer

New Rich
App

OTrP
Client

TEE

REE

2: Install and
launch rich app

Issue: 3 messages for TAM to learn that
there’s a desire to install TA X in the Foo TEE

Issue: Every rich app needs a TAM transport componentNew TA

1: Download rich
app + metadata
(e.g., manifest)

Connection model #2: what I wanted

4

TAM

App store
installer

OTrP
Client

TEE

REE

New TA

1 message for TAM to learn that there’s a
desire to install TA x in the Foo TEE

If TAM denies request, no need to launch or even
install rich app if it has a hard dependency on TA X

New Rich
App

1: Download rich
app + metadata
(e.g., manifest)

2: “Rich app
depends on TA X”

10 issues found starting implementation (2/4)

4. Section 9.1.1 requires a list of OCSP stapling data, but as far as I can see, the
document provides no information or citation about the correct format
for such data.

5. The “did” field in 9.2.1.1 seems to be either (a) redundant and should be
removed, or (b) missing from other messages like Install TA. The text explains
the field is to check that the message was received by the right device. My
opinion is that since the TEE has to trust the TAM anyway, it’s the TAM’s
responsibility to send messages to the right device over an authenticated
channel (whether encrypted or not). So I think it should be removed.

6. Some fields, e.g. “signerreq”, have boolean values that are encoded as
strings (“true”, “false”). I think these should be boolean types, not strings,
which would also have the advantage of better compression if we can use
CBOR encoding.

5

10 issues found starting implementation (3/4)

7. Section 6.5.1 point 9.A implies that to install a TA, one must have an extra
round trip to create an SD first if one isn’t already there. I would expect one
common case to be where there is one TA per SD, so that all TAs are isolated
from each other. As such, requiring the extra delay is inefficient in time,
bandwidth, and processing. All the fields in CreateSD are already present
in an InstallTA message (except the “did” field mentioned above in issue #5),
so it could be done automatically by the first InstallTA message itself.

8. The scope of uniqueness of the “rid” and “tid” fields is underspecified. They
just say “unique”. I think “rid” is just supposed to be unique within a given
{session,”tid”} but I can’t tell for sure. And I think “tid” is just supposed
to be unique within a given session (not globally across all sessions, all TAMs,
all devices), but I can’t tell. They’re also formatted as strings, but I’m not sure
why they can’t be integers which I think would be much more efficient.

6

CreateSD vs InstallTA

• Key can optionally be used to protect TA
binary/data so TAM etc. cannot see them

• If no encryption:
• CreateSD exchange carries no information that

couldn’t be piggybacked in InstallTA and be more
efficient

• If encryption:
• Requires key per {SD,TEE} (e.g., per {TA,TEE}),

vs. just one per {SP,TEE}.

Don’t convolute keys and TA isolation boundaries

7

TAM TEE

10 issues found starting implementation (4/4)

9. I found it confusing that the names of the messages don’t match the
name values in the messages themselves (“GetDeviceStateResponse” vs
“GetDeviceTEEStateTBSResponse”, etc.) Having these not match is bug-
prone.

10. It’s unclear whether a rich app can depend on two TA’s from different
TAMs, and whether a TA can depend on a TA from a different TAM. In the
use case where the device admin runs the TAM and controls all TAs on
their devices the answer would be no. But in other use cases I’m not
sure. If so, then the question arises about how dependencies are
expressed and whether a dependency needs to express which TAM is
used. This then begs the questions of whether a TA might be via more
than one TAM, or might change TAMs over time. The answers here
probably belong in the arch doc.

8

Recommendations for
TEEP Support of

Intel® SGX Technology
Overview of SGX & Selected TEEP Topics

David M. Wheeler

david.m.wheeler@intel.com

1

Apologies…

• If you are really interested in the details of SGX

This Won’t Satisfy Your Curiosity

• The best public paper can be found at:
• Intel® SGX Explained https://eprint.iacr.org/2016/086.pdf
• Stanford Seminar YouTube: https://www.youtube.com/watch?v=mPT_vJrlHlg
• Other Resources: https://software.intel.com/en-us/sgx/resource-library

https://software.intel.com/en-us/sgx/academic-research

Please refrain from asking deep questions on SGX Architecture that are not relevant to TEEP

We are under a Time Constraint

2

https://eprint.iacr.org/2016/086.pdf
https://www.youtube.com/watch?v=mPT_vJrlHlg
https://software.intel.com/en-us/sgx/resource-library
https://software.intel.com/en-us/sgx/academic-research

What We Will Cover

• Overview of Intel® Software Guard Extensions (SGX)

• SGX TCB (Trusted Computing Base)

• SGX Attestation

3

Overview of Intel® SGX
 SGX provides a protected area of memory (EPC

Memory) where enclave code and data exist

 Enclave code is packaged with the Client
Application, and loaded into EPC Memory by
the Application
o To the REE, both memory areas are within the

same process

o Enclave is prevented from access into Client
process memory, AND Client prevented from
access to the EPC (see flow chart)

 A special enclave (Launch Control) is used to
load an enclave with code and data, and the
Launch Control verifies the code during loading
(authentication, authorization & integrity)
 The Enclave must be signed by the Launch Key

 Entering and Exiting the enclave are done
through processor instructions
o EENTER and EEXIT EPC = Enclave Page Cache

4

What is Relevant to TEEP
 Trusted Application is not Separate from Client Application

 SGX Applications include both the trusted part (Enclave) and the untrusted part (Client Application)
 This doesn’t prevent a Client Application from presenting all information needed to “authorize” an SGX

application to a TEEP Agent
 Some information is embedded in the enclave

 Authorized TAM or Service Provider (Mr. Signer), Integrity Proof (Mr.Enclave), Other Rights

 Other information can be provided by the Client App
 TAM Identity & authorization signatures, Other stuff?

 There is no Security Domain
 Only one “program” can be loaded a single enclave – multiple separate enclaves can exist simultaneously
 One can consider an Enclave as a single domain for only one TA
 Optionally, an implementation of a TEEP Agent can manage TA interactions “as if” they were in the same

Security Domain (e.g. secret sharing, secure channels, etc.)

 There is no internal Agent watching all Enclaves
 It isn’t possible to report on all the “installed” TAs – installed TA’s take no resources from the TEE until loaded

 It isn’t possible to report on all the “running” TAs – as they do not know about each other
 TEEP Agent could report on all TA’s that it loaded as running enclaves

 Launching an application that contains an enclave does not mean the enclave gets loaded

5

How would SGX Use TEEP?

 Install / Uninstall
 There is no real install/uninstall commands in SGX

 Any application on the platform file system can carry SGX enclave code (a TA)

 Same vector as any REE Application install (e.g. HDD, Flash, USB Stick, Network, etc.)

 One option could be signing the SGX enclave code (TA) so that it can be launched
 For example:

1. Service Provider requests TAM to prepare a particular Application for an SGX Platform (e.g. Install)

2. The TAM holds the Enclave Signing Key for some platforms

3. TAM authorizes SP, and if OK, then signs the requested Enclave & delivers it to the Platform

 Simplifies Application Developer deployment

 Start / Stop
 An SGX enclave is launched (Started) by the application (not by the TEE)

 TEEP Start could be mapped to Client Application launch
 However, the Client Application can delay the launch of the enclave to a later time

6

Intel® SGX Trusted Computing Base

 Security Perimeter is the CPU
package boundary
 Data/Code inside CPU is unencrypted

 Data/Code outside CPU is encrypted/integrity
protected

 BIOS is formally outside the TCB
 BIOS controls how much memory is allocated

to EPC, but cannot affect the security of EPC
memory

 OS is formally outside the TCB
 OS controls page tables, but does not control

the security or attributes of the pages

 Interrupts and certain OS features (files,
network sockets) are still handled by OS, but
considered in Application scope/control

 State is saved in special EPC memory area for
interrupts and context switches

Attack Surface under Regular REE Attack Surface under SGX w/REE

Access by OS / VMM
to Enclave is prevented

7

What is Relevant to TEEP

 SGX does not depend on Secure Boot
 SGX has it’s own Roots of Trust for:

 Measurement (RTM), Integrity (RTI), Verification (RTV),

 Confidentiality (RTC), Reporting (RTR), Storage* (RTS)

On an SGX platform, Secure Boot may NOT be turned on
 Not possible to report from SBM

* The RTS is limited to providing sealing keys – actual storage is based on OS services 8

Intel® SGX Attestation

 SGX Includes Two forms of Attestation
 Local Attestation – Hash Based
 Remote Attestation – EPID Signature (Elliptic Curve Group Signature)

 Local Attestation
 AES–CMAC Key Generated from Enclave & Platform

 Attributes of the Enclave (Signer, Integrity Measurements, Version, etc.)

 Platform Attributes (Fuses, Microcode Version, CPU Serial #, etc.)

 Allows inclusion of other message via Hash
 Can be sent to other enclaves on same platform

 Remote Attestation
 Built from Local Attestation by SGX Signing Enclave
 Only Signing Enclave has access to EPID key (the RTR)
 Requires an External Verifier for EPID Signatures

9

What is Relevant to TEEP

 Add EPID Digital Signature Algorithm as Optional to Support
 Will be supported by default on SGX-Enabled Platforms

 Must be supported by TAMs to consume attestation from SGX Platforms
 Or offload to an Intel® SGX Verifier

 Needed to support SGX Attestation Signatures

 The only way to verify trust in an SGX Enclave

 Can use an Attestation to “certify” another RSA or ECDSA key pair
 This would enable SP to have an Application/TA-specific RSA or ECDSA key pair

 Local Attestation can be used to provide communication between the TA’s and a
TEEP Agent
 Can be used to simulate Security Domains and “Universal TEE Knowledge” for reporting state

10

ISO/IEC 20008-2 Known Patent Rights

 The following are the known (to me on 7/16/2018) IPR claims on EPID

 I make no claim on the part of Intel or other parties that this list is
complete or accurate

1. ISO/IEC 20008-2 (EPID Group Signature)
 NEC corporation – RAND/reciprocal
 Electronics and Telecommunications Research Institute (ETRI) – RAND/reciprocal

1. ISO/IEC 20009-2 (SIGMA Protocol: P2P Attested Channel)
 China IWNCOMM Co., LTD. – RAND
 Electronics and Telecommunications Research Institute (ETRI) – RAND/reciprocal

11

Other Crypto Recommendations
 NIST Recommends moving to larger Key Sizes

 NIST Recommendations

 Minimal to support should be
 RSA-3072, RSA-4096, RSA-2048
 ECDSA using NIST P-384, NIST P-256
 ECDSA using Ed448-Goldilocks, Ed25519
 EPID 2.0 Group Signature (Elliptic Curve w/ Bilinear Maps, TCG DAA group signature scheme)

 Based on ISO Standard – ISO/IEC 20008-2:2013 Information technology -- Security techniques -- Anonymous digital
signatures -- Part 2: Mechanisms using a group public key

 https://software.intel.com/en-us/articles/intel-enhanced-privacy-id-epid-security-technology

https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/assets/public/upload/CNSA-Suite-and-Quantum-Computing-FAQ.pdf

12

https://software.intel.com/en-us/articles/intel-enhanced-privacy-id-epid-security-technology

What TEEP Services are Relevant to SGX?

 TEEP on SGX will likely operate much differently than on a TZ platform
 The TEEP Agent’s counterpart “inside the TEE” will be an enclave just like every other enclave

 The TEEP Service Enclave will perform services as if it were managing the whole TEE

 But can only manage Enclaves that “cooperate” – have a TEEP Agent Helper library as part of their enclave/App

 The TEEP Service Enclave will provide information on a “best effort” basis – may not know about all enclaves

 TEEP will only “see” the applications installed/started/stopped through TEEP

 Get Device State is a “Best Effort” Service

 Install/Uninstall a TA is equivalent to same operation on a Client Application
 TEEP Agent can report on TAs installed through TEEP, but not on ALL TAs/Applications

 TEEP Agent cannot prevent TAs / Client Applications from being deleted (Denial of Service)

 TEEP Agent may not be able to delete / remove a TA (depends on implementation)

 TEEP Services are Useful in an SGX Environment, but will be limited

13

Summary Recommendations
for TEEP SGX Support

 TEEP MUST support TA delivery within a Client Application

 TEEP MUST support EPID Signature Algorithm as Optional

 TEEP SHOULD look to support longer key sizes due to Post-Quantum recommendations

 TEEP SHOULD NOT require Secure Boot Attestation
 SBM and TFW are not required of all platforms

 Attestation Report should be flexible, allowing only required platform-specific elements

 TEEP SHOULD further explore the Security Domain Concept and only if valuable and
necessary, then develop a crisp definition and model for Security Domains
 This crisp model should encompass platforms that create SD’s of size One

 TEEP MUST AVOID definitions of operations that are very platform specific
 Secure Boot, specific types of reporting, and platform state

 Some reporting needs to be considered ‘Best-Effort’ or contain a quality-of-reporting

14

