Recommendations for TEEP Support of Intel® SGX Technology

Overview of SGX & Selected TEEP Topics

David M. Wheeler

david.m.wheeler@intel.com

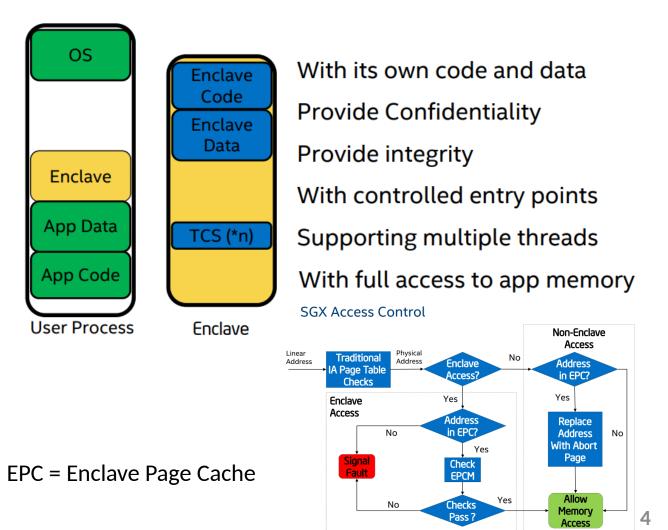
Apologies...

• If you are really interested in the details of SGX This Won't Satisfy Your Curiosity

- The best public paper can be found at:
 - Intel[®] SGX Explained <u>https://eprint.iacr.org/2016/086.pdf</u>
 - Stanford Seminar YouTube: <u>https://www.youtube.com/watch?v=mPT_vJrlHlg</u>
 - Other Resources: <u>https://software.intel.com/en-us/sgx/resource-library</u> <u>https://software.intel.com/en-us/sgx/academic-research</u>

Please refrain from asking deep questions on SGX Architecture that are not relevant to TEEP * We are under a Time Constraint

What We Will Cover


- Overview of Intel[®] Software Guard Extensions (SGX)
- SGX TCB (Trusted Computing Base)
- SGX Attestation

Overview of Intel® SGX

- SGX provides a protected area of memory (EPC Memory) where enclave code and data exist
- Enclave code is packaged with the Client Application, and loaded into EPC Memory by the Application
 - O To the REE, both memory areas are within the same process
 - O Enclave is prevented from access into Client process memory, AND Client prevented from access to the EPC (see flow chart)
- A special enclave (Launch Control) is used to load an enclave with code and data, and the Launch Control verifies the code during loading (authentication, authorization & integrity)
 - The Enclave must be signed by the Launch Key
- Entering and Exiting the enclave are done through processor instructions

0 EENTER and EEXIT

Trusted execution environment embedded in a process

What is Relevant to TEEP

Trusted Application is not Separate from Client Application

- SGX Applications include both the trusted part (Enclave) and the untrusted part (Client Application)
- This doesn't prevent a Client Application from presenting all information needed to "authorize" an SGX application to a TEEP Agent
 - Some information is embedded in the enclave
 - Authorized TAM or Service Provider (Mr. Signer), Integrity Proof (Mr.Enclave), Other Rights
 - Other information can be provided by the Client App
 - TAM Identity & authorization signatures, Other stuff?

There is no Security Domain

- Only one "program" can be loaded a single enclave multiple separate enclaves can exist simultaneously
- One can consider an Enclave as a single domain for only one TA
- Optionally, an implementation of a TEEP Agent can manage TA interactions "as if" they were in the same Security Domain (e.g. secret sharing, secure channels, etc.)

There is no internal Agent watching all Enclaves

- It isn't possible to report on all the "installed" TAs installed TA's take no resources from the TEE until loaded
- It isn't possible to report on all the "running" TAs as they do not know about each other
 - TEEP Agent could report on all TA's that it loaded as running enclaves
 - Launching an application that contains an enclave does not mean the enclave gets loaded

How would SGX Use TEEP?

Install / Uninstall

- There is no real install/uninstall commands in SGX
 - Any application on the platform file system can carry SGX enclave code (a TA)
 - Same vector as any REE Application install (e.g. HDD, Flash, USB Stick, Network, etc.)
- One option could be signing the SGX enclave code (TA) so that it can be launched
 - For example:
 - 1. Service Provider requests TAM to prepare a particular Application for an SGX Platform (e.g. Install)
 - 2. The TAM holds the Enclave Signing Key for some platforms
 - 3. TAM authorizes SP, and if OK, then signs the requested Enclave & delivers it to the Platform
 - Simplifies Application Developer deployment

Start / Stop

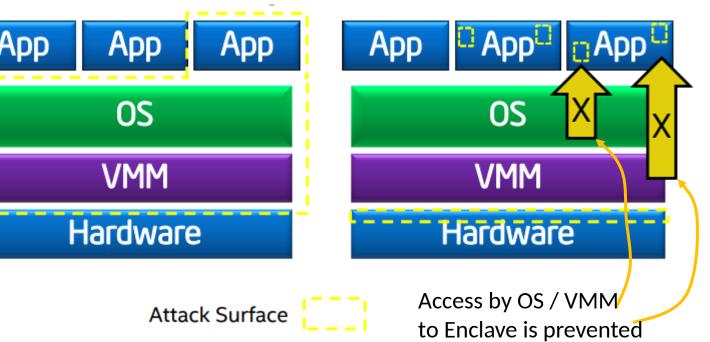
- An SGX enclave is launched (Started) by the application (not by the TEE)
- TEEP Start could be mapped to Client Application launch
 - However, the Client Application can delay the launch of the enclave to a later time

Intel® SGX Trusted Computing Base

Security Perimeter is the CPU package boundary

- Data/Code inside CPU is unencrypted
- Data/Code outside CPU is encrypted/integrity protected

BIOS is formally outside the TCB


 BIOS controls how much memory is allocated to EPC, but cannot affect the security of EPC memory

OS is formally outside the TCB

- OS controls page tables, but does not control the security or attributes of the pages
- Interrupts and certain OS features (files, network sockets) are still handled by OS, but considered in Application scope/control
 - State is saved in special EPC memory area for interrupts and context switches

Attack Surface under Regular REE

Attack Surface under SGX w/REE

What is Relevant to TEEP

SGX does not depend on Secure Boot

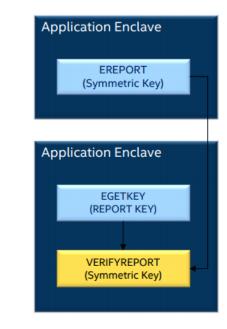
- SGX has it's own Roots of Trust for:
 - Measurement (RTM), Integrity (RTI), Verification (RTV),
 - Confidentiality (RTC), Reporting (RTR), Storage* (RTS)

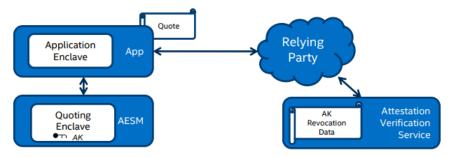
On an SGX platform, Secure Boot may NOT be turned on

Not possible to report from SBM

Intel® SGX Attestation

SGX Includes Two forms of Attestation


- Local Attestation Hash Based
- Remote Attestation EPID Signature (Elliptic Curve Group Signature)


Local Attestation

- AES-CMAC Key Generated from Enclave & Platform
 - Attributes of the Enclave (Signer, Integrity Measurements, Version, etc.)
 - Platform Attributes (Fuses, Microcode Version, CPU Serial #, etc.)
- Allows inclusion of other message via Hash
- Can be sent to other enclaves on same platform

Remote Attestation

- Built from Local Attestation by SGX Signing Enclave
- Only Signing Enclave has access to EPID key (the RTR)
- Requires an External Verifier for EPID Signatures

What is Relevant to TEEP

Add EPID Digital Signature Algorithm as Optional to Support

- Will be supported by default on SGX-Enabled Platforms
- Must be supported by TAMs to consume attestation from SGX Platforms
 - Or offload to an Intel[®] SGX Verifier
- Needed to support SGX Attestation Signatures
- The only way to verify trust in an SGX Enclave
- Can use an Attestation to "certify" another RSA or ECDSA key pair
 - This would enable SP to have an Application/TA-specific RSA or ECDSA key pair

Local Attestation can be used to provide communication between the TA's and a TEEP Agent

• Can be used to simulate Security Domains and "Universal TEE Knowledge" for reporting state

ISO/IEC 20008-2 Known Patent Rights

- The following are the known (to me on 7/16/2018) IPR claims on EPID
- I make no claim on the part of Intel or other parties that this list is complete or accurate
- 1. ISO/IEC 20008-2 (EPID Group Signature)
 - NEC corporation RAND/reciprocal
 - Electronics and Telecommunications Research Institute (ETRI) RAND/reciprocal
- 2. ISO/IEC 20009-2 (SIGMA Protocol: P2P Attested Channel)
 - China IWNCOMM Co., LTD. RAND
 - Electronics and Telecommunications Research Institute (ETRI) RAND/reciprocal

Other Crypto Recommendations

NIST Recommends moving to larger Key Sizes

NIST Recommendations

Algorithm	
RSA 3072-bit or larger	
Diffie-Hellman (DH) 3072-bit or larger	
ECDH with NIST P-384	
ECDSA with NIST P-384	
SHA-384	
AES-256	

_									
	Date	Minimum of Strength	Symmetric Algorithms	Factoring Modulus	Discrete Key	Logarithm Group	Elliptic Curve	Hash (A)	Hash (B)
Г	(Legacy)	80	2TDEA*	1024	160	1024	160	SHA-1**	
	2016 - 2030	112	3TDEA	2048	224	2048	224	SHA-224 SHA-512/224 SHA3-224	
Г	2016 - 2030 & beyond	128	AES-128	3072	256	3072	256	SHA-256 SHA-512/256	SHA-1
1	2016 - 2030 & beyond	192	AES-192	7680	384	7680	384	SHA-384 SHA3-384	SHA-512/224
	2016 - 2030 & beyond	256	AES-256	15360	512	15360	512	SHA-512 SHA3-512	SHA-256 SHA-512/256 SHA-384 SHA-512 SHA3-512

https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/assets/public/upload/CNSA-Suite-and-Quantum-Computing-FAQ.pdf

Minimal to support should be

- RSA-3072, RSA-4096, RSA-2048
- ECDSA using NIST P-384, NIST P-256
- ECDSA using Ed448-Goldilocks, Ed25519
- EPID 2.0 Group Signature (Elliptic Curve w/ Bilinear Maps, TCG DAA group signature scheme)
 - Based on ISO Standard ISO/IEC 20008-2:2013 Information technology -- Security techniques -- Anonymous digital signatures --Part 2: Mechanisms using a group public key
 - https://software.intel.com/en-us/articles/intel-enhanced-privacy-id-epid-security-technology

What TEEP Services are Relevant to SGX?

TEEP on SGX will likely operate much differently than on a TZ platform

- The TEEP Agent's counterpart "inside the TEE" will be an enclave just like every other enclave
 - The TEEP Service Enclave will perform services as if it were managing the whole TEE
 - But can only manage Enclaves that "cooperate" have a TEEP Agent Helper library as part of their enclave/App
 - The TEEP Service Enclave will provide information on a "best effort" basis may not know about all enclaves
- TEEP will only "see" the applications installed/started/stopped through TEEP
- Get Device State is a "Best Effort" Service

Install/Uninstall a TA is equivalent to same operation on a Client Application

- TEEP Agent can report on TAs installed through TEEP, but not on ALL TAs/Applications
- TEEP Agent cannot prevent TAs / Client Applications from being deleted (Denial of Service)
- TEEP Agent may not be able to delete / remove a TA (depends on implementation)

TEEP Services are Useful in an SGX Environment, but will be limited

Summary Recommendations for TEEP SGX Support

- TEEP MUST support TA delivery within a Client Application
- TEEP MUST support EPID Signature Algorithm as Optional
- TEEP SHOULD look to support longer key sizes due to Post-Quantum recommendations
- TEEP SHOULD NOT require Secure Boot Attestation
 - SBM and TFW are not required of all platforms
 - Attestation Report should be flexible, allowing only required platform-specific elements

TEEP SHOULD further explore the Security Domain Concept and only if valuable and necessary, then develop a crisp definition and model for Security Domains

- This crisp model should encompass platforms that create SD's of size One
- TEEP MUST AVOID definitions of operations that are very platform specific
 - Secure Boot, specific types of reporting, and platform state
 - Some reporting needs to be considered 'Best-Effort' or contain a quality-of-reporting