
Encrypted SNI
IETF 102

Eric Rescorla
ekr@rtfm.com

Kazuho Oku
kazuhooku@gmail.com

Nick Sullivan
nick@cloudflare.com

Chris Wood
cawood@apple.com

“Develop a mode that encrypts as much of the
handshake as is possible to reduce the amount of
observable data to both passive and active attackers.”
-- TLS WG Charter

How did we do?
● Not too bad

○ Most of the server extensions
○ Server certificate
○ Client certificate

● What’s left?
○ Client’s extensions (principally Server Name Indication)

Clients want to conceal the server they are
going to

● Why?
○ Surveillance
○ Censorship

● Attack models
○ Active
○ Passive

Sources of Server Identity Leakage
● DNS resolution
● Server Name Indication
● Server certificate
● Server IP address
● Traffic analysis

Sources of Server Identity Leakage
● DNS resolution DPRIVE/DoH
● Server Name Indication This draft
● Server certificate TLS 1.3
● Server IP address CDNs/multi-tenanting*
● Traffic analysis

We have spent a lot of time on this
● Going back to the start of TLS 1.3
● See also draft-ietf-tls-sni-encryption-03
● Concluded it was really hard
● So what’s changed?

80/20 solution
● Previously we worried about sticking out

○ What if just “sensitive” sites support SNI encryption
○ But what if we could do a mass change?

● A solution that works for CDNs and hosting providers
○ They can mass-reconfigure all their domains
○ Many of them also control DNS for their customers

● This puts everyone behind the same provider in the same anonymity set

Topologies - Today

Topologies - Split Mode

Topologies - Shared Mode

DNS Pieces

TXT record under _esni.example.com

_esni.cloudflare-esni.com. 120 IN TXT
"GpTSIAAkAB0AIICiQKV0aCWs51BnOr19MapPjMeSEmt+0iyd2iu8Q7tIAAI
TAQEEAAAAAFs/iOgAAAAAW7Yv5wAA"

struct {
 uint8 checksum[4];
 KeyShareEntry keys<4..2^16-1>;
 CipherSuite cipher_suites<2..2^16-2>;
 uint16 padded_length;
 uint64 not_before;
 uint64 not_after;
 Extension extensions<0..2^16-1>;

} ESNIKeys;

New TLS Extension

 struct {
 CipherSuite suite;
 opaque record_digest<0..2^16-1>;
 opaque encrypted_sni<0..2^16-1>;
 } EncryptedSNI;

● suite: the AEAD algorithm used to encrypt the SNI
● record_digest: the hash of the ESNIKeys record
● encrypted_sni: encryption of the original ServerKeysList

structure

Key Derivation
● ESNI-encryption key derived from

○ Client KeyShare from ClientHello
○ A server KeyShare from ESNIKeys structure

● This has some side effects
○ Client chooses and sends one KeyShare for both ESNI and the handshake

■ Ciphersuite is still negotiated per usual
○ Client-facing and hidden servers need to share a group
○ Potential for downgrades (more on this later)

Interaction with Middleboxes
● S 9.3 requires middleboxes not to send extensions they don’t understand

○ Therefore they will strip the ESNI
○ The server will likely respond with a default certificate
○ This will chain to a user-installed trust anchor
○ So we could detect it

● Noncompliant middleboxes create hard failure
○ Not entirely clear how to detect this
○ Some kind of captive portal detection?

How do enterprises disable ESNI?
● Strip ESNIKeys records from DNS? Keep TTLs short?
● Some sort of client policy push

○ You’ll want this for DoH as well
● Something else?

Why not just encrypt everything?
● This interacts poorly with split architecture

○ ESNI permits key separation
● Also means that middleboxes will strip every extension

○ Which will certainly cause bustage
● We could later introduce a separate “the rest of the extensions”

encrypted extension

This draft is all wrong
● DNS structure

○ Should we remove base64?
○ What about a non-text RR type?
○ Alt-svc instead of _esni record

● TLS
○ Maybe don’t reuse key share

■ But need to bind the client KeyShare to ESNI
○ Hand waving: separate ESNIKeyShare/ESNI + KeyShare->ESNI binding

● But it is in the right direction (we think)

Interop Status (mostly not landed)
● Libraries

○ NSS, BoringSSL, PicoTLS
● Browsers

○ Firefox, Safari (experimental, en route)
● Test servers for PicoTLS and BoringSSL (Cloudflare)

WG Interest? Next Steps?

