
1

QUIC
Internet-Scale Deployment on Linux

TSVArea, IETF 102, Montreal

Ian Swett
Google

Protocol for HTTPS transport, deployed at Google starting 2014
Between Google services and Chrome / mobile apps

Improved application performance
YouTube Video Rebuffers: 15 - 18%
Google Search Latency: 3.6 - 8%

35% of Google's egress traffic (7% of Internet)

IETF QUIC working group formed in Oct 2016
Modularize and standardize QUIC

A QUIC History - SIGCOMM 2017

2

3

Google's QUIC deployment

QUIC vs. TLS/TCP CPU
3.5x → 2x

Crypto (esp. ChaCha20)

Sending and receiving UDP (sendmsg, recvmsg)

QUIC-internal state

Processing encrypted acks

QUIC CPU Utilization: Major Sources

4

Crypto (esp. ChaCha20)
Used hand-optimized assembly
Inplace encryption

Sending and receiving UDP (sendmsg, recvmsg)

QUIC-internal state

Processing encrypted acks

QUIC CPU Utilization: Major Sources

5

Crypto (esp. ChaCha20)
Used hand-optimized assembly
Inplace encryption

Sending and receiving UDP (sendmsg, recvmsg)
PACKET_RX_RING, UDP GSO

(kernel bypass is still very lucrative)
QUIC-internal state

Processing encrypted acks

QUIC CPU Utilization: Major Sources

6

Crypto (esp. ChaCha20)
Used hand-optimized assembly
Inplace encryption

Sending and receiving UDP (sendmsg, recvmsg)
PACKET_RX_RING, UDP GSO

(kernel bypass is still very lucrative)
QUIC-internal state

Improved cache efficiency, data structures
Minimize allocations and memcpy

Processing encrypted acks

QUIC CPU Utilization: Major Sources

7

Crypto (esp. ChaCha20)
Used hand-optimized assembly
Inplace encryption

Sending and receiving UDP (sendmsg, recvmsg)
PACKET_RX_RING, UDP GSO

(kernel bypass is still very lucrative)
QUIC-internal state

Improved cache efficiency, data structures,
Minimize allocations and memcpy

Processing encrypted acks
Ack decimation: Reduce ack rate to ¼ RTT or 10 packets

QUIC CPU Utilization: Major Sources

8

● Use socket per thread with SO_REUSEPORT for receive
○ Provides stable 4-tuple hashes among flows
○ App dispatches based on QUIC Connection ID

● NAT rebinding, conn migration are << 1% of conns
○ Relying on 4-tuple is mostly adequate
○ Tossing packets between threads for the rest
○ A BPF can provide CID-based steering

9

‘Recommended’ Use of Sockets for QUIC

● Use socket per thread for sending
○ send-socket per connection mostly impractical
○ also largely not beneficial

Issues
● Can’t use FQ-pacing because many flows share a socket
● Need an extra-large send buffer for so many flows
● FQ qdisc creates unfairness between QUIC and TCP

=> Lots of blocked writes, even with a large buffer

10

‘Recommended’ Use of Sockets for QUIC (cont’d)

Packet sockets with shared memory(RX_RING) are still a
substantial improvement over just SO_REUSEPORT.

Packet sockets with TX_RING were not a visible win, though it's
not clear why.

Using packet sockets for send is much more complex than
receive, so the complexity wasn’t worth it.

Packet Sockets

11

UDP GSO achieves performance similar to TCP! (3x faster)

Releases all datagrams from a send call at once

 => Don’t get full CPU savings until 512Mbps
(64KB sends at 1ms pacing granularity)

Ideally the segment could be split and paced to reduce loss

LWN article

UDP GSO

12

https://lwn.net/Articles/752956/

Minimum release time based pacing is ideal

Easy to integrate with congestion control, including BBR, vs
rate-based pacing. Allows QUIC to share a socket among flows.

Disabling pacing saves up to 30% CPU in some locations
(Carousel, SIGCOMM 2017), but also increases retransmit rates
over 50%.

TXTIME patch, FQ in-progress, Chromium pacing offload

Packet Pacing

13

https://www.cc.gatech.edu/~amsmti3/files/carousel-sigcomm17.pdf
http://patchwork.ozlabs.org/project/netdev/list/?series=52493&state=*
https://cs.chromium.org/chromium/src/net/third_party/quic/core/quic_connection.h?q=quic_conn&sq=package:chromium&g=0&l=1313

The Sending Dream

14

QUIC
Shared Memory

Netstack

Release Time
Pacing

(Imagine a
timing wheel)

NIC
Symmetric Key
Release Time

UDP receive-side optimizations - UDP GRO?

Crypto offload API and support - Both send and receive

API to allow pacing of multi-datagram UDP sends (ie: GSO)
… solve the tradeoff between packet loss and CPU usage

What remains to be done

15

Willem de Bruijn, Eric Dumazet, Jesus Sanchez-Palencia, all
others who’ve improved Linux UDP and pacing in the past few
years.

Also, thanks to Tom Herbert for SO_REUSEPORT!

IETF drafts: transport-13, recovery-13, tls-13, http-13
Chromium QUIC Code: cs.chromium.org

Thanks!

16

https://tools.ietf.org/html/draft-ietf-quic-transport-13
https://tools.ietf.org/html/draft-ietf-quic-recovery-13
https://tools.ietf.org/html/draft-ietf-quic-tls-13
https://tools.ietf.org/html/draft-ietf-quic-http-13
https://cs.chromium.org/chromium/src/net/third_party/quic/

