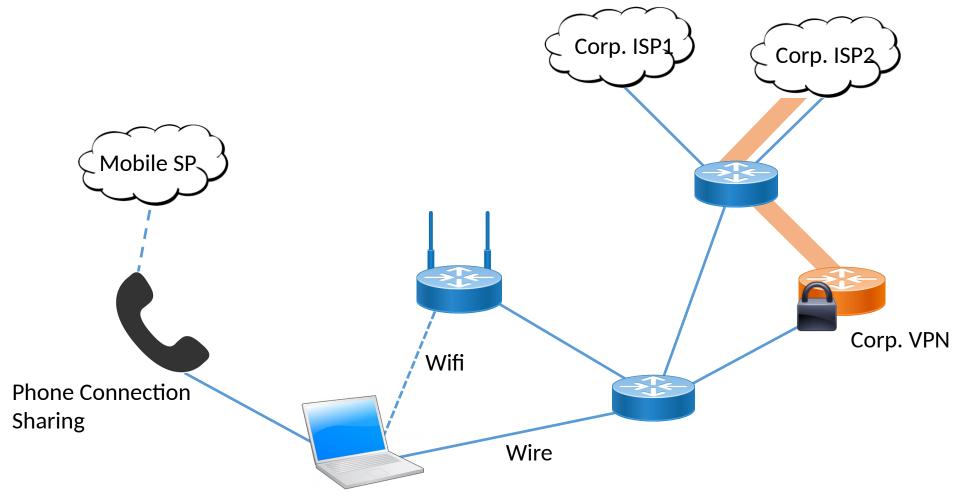
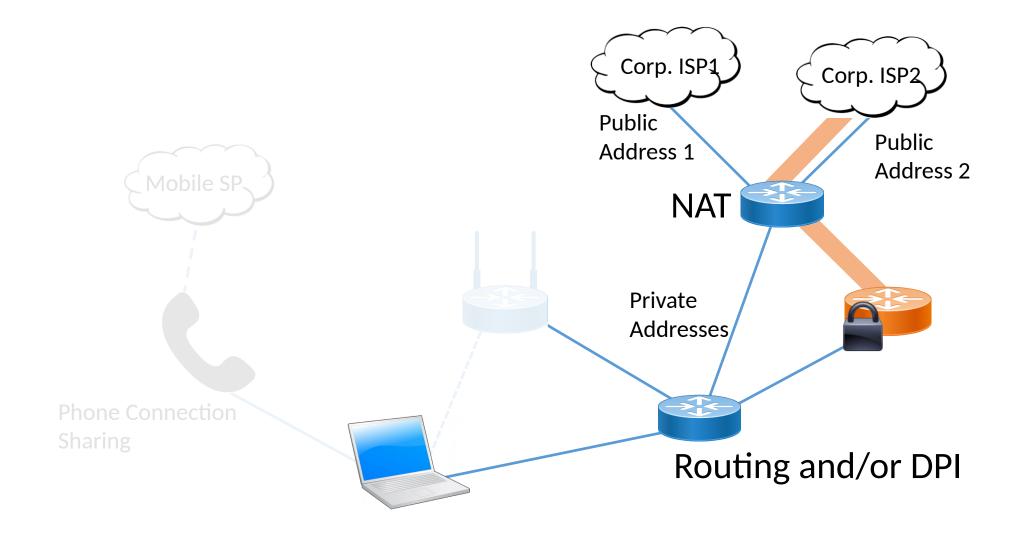


Discovering Provisioning Domain Names and Data

draft-ietf-intarea-provisioning-domains-02

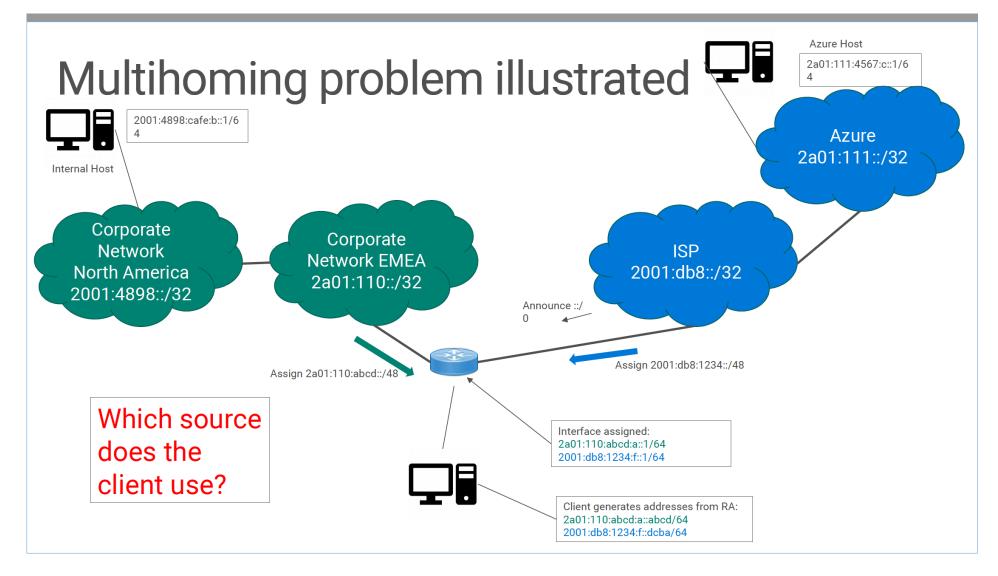

P. Pfister, E. Vyncke, T. Pauly, D. Schinazi, W. Shao

IETF-102, Montréal, July 2018


Hosts and networks are multi-homed

Just a few examples...

Multi-Homing, the legacy way...



Multi-Homed networks in IPv6

- Assign provider assigned (PA) addresses to hosts.
 - Native to IPv6 hosts (RFC4861, ...)
 - HNCP for home networks (RFC7788)
 - draft-ietf-rtgwg-enterprise-pa-multihoming-07 for corp. networks.
- Teach the hosts to pick and use multiple addresses.
 - IPv6 source address selection (RFC6724)
 - draft-linkova-6man-default-addr-selection-update
 - draft-ietf-v6ops-conditional-ras-05
 - Multi-Path TCP (RFC6824)

Bundling IP address & DNS resolver

Multihoming and CDNs

- Name lookups for resources stored on CDNs give different answers depending on the network connection
- Host on homenet may look up name using resolver from provider A, then connect to CDN using provider B
- This will generate support requests
- What to do?

The purpose of this draft is to:

1. Identify Provisioning Domains (PvDs).

[RFC7556] Provisioning Domains (PvDs) are consistent sets of network properties that can be implicit, or advertised explicitly.

Differentiate provisioning domains by using FQDN identifiers.

2. Give PvD Additional Information.

Name, characteristics, captive portal, etc...

Step 1: PvD ID

```
|H|L|R|
                   Length
                                        Reserved
     Type
       Sequence Number
   _+_+_+_+_+_+
                         PvD ID FQDN
                                Padding
             Router Advertisement message header
              (Only present when R-flag is set)
   Options ...
+-+-+-+-+-+-+-+-+-
```


Step 1: Identify PvDs

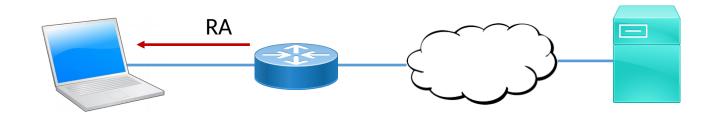
- At most one occurrence in each RA.
- PvD ID is an FQDN associated with options in the RA.
- Implicit PvDs (without option) identified by RA source address and interface.
- L bit to indicate the PvD has DHCPv4 on the link.
- H bit to indicate Additional Information is available with HTTPS.
- R bit to indicate that another RA header is included
- Seq. number used for **push-based refresh**.
- **Delay** is for exponential backoff when refreshing

PvD ID Example

Type: 21 0000 Reserved Length: 12 Sequence Number Х 0 (padding) 0 (padding) | 0 (padding) | 0 (padding) | 0 (padding) RDNSS option (RFC 6106) length: 5 Prefix Information Option (RFC 4861) length: 4

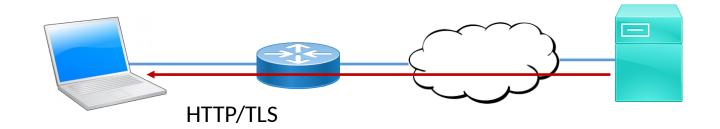
PvD ID Example

0000 Reserved Type: 21 Length: 12 Sequence Number m Х 0 (padding) 0 (padding) | 0 (padding) | 0 (padding) | 0 (padding) RDNSS option (RFC 6106) length: 5 Prefix Information Option (RFC 4861) length: 4


PvD ID Example

0 0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5	2 6 7 8 9 0 1 2 3	3 3 4 5 6 7 8 9 0 1		
Type: 21	Length: 12	0 0 0 F	Reserved		
Sequence	Number	7	e		
x	a a	m	p		
l l	e	3	0		
r	l g	0	0 (padding)		
0 (padding)	0 (padding)	0 (padding)	0 (padding)		
RDNSS option (RFC 6106) length: 5					
Prefix Information Option (RFC 4861) length: 4					

Step 2: Get the PvD Additional Data


When the H bit is set:

GET https://<pvd-id>/.well-known/pvd

Using network configuration (source address, default route, DNS, etc...) **associated with the received PvD**.

Step 2: Get the PvD Additional Data

When the H bit is set:

GET https://<pvd-id>/.well-known/pvd

Using network configuration (source address, default route, DNS, etc...) **associated with the received PvD**.

Step 2: Get the PvD Additional Data

```
{
   "name": "Foo Wireless",
   "expires": "2017-07-23T06:00:00Z",
   "prefixes" : ["2001:db8:1::/48", "2001:db8:4::/48"]
}
```

Some other examples (see also https://smart.mpvd.io/.well-known/pvd) as well as draft-pfister-capport-pvd-00

```
captive-api : "https://captive.org/api"
```


Big News from IANA

	17	IP Address/Prefix Option	[RFC5568]
	18	New Router Prefix Information Option	[RFC4068]
	19	Link-layer Address Option	[RFC5568]
ľ	20	Neighbor Advertisement Acknowledgment Option	[RFC5568]
	21	PvD ID Router Advertisement Option (reclaimable in future)	[draft-ietf-intarea-provisioning-domains]
	22	Unassigned	
	23	MAP Option	[RFC4140]
	24	Route Information Option	[RFC4191]
	25	Recursive DNS Server Option	[RFC5006][RFC8106]
	26	RA Flags Extension Option	[RFC5175]
	27	Handover Key Request Option	[RFC5269]
	၁၀	Handayar Kay Banky Ontion	[DECE360]

Implementation status

Linux - https://github.com/IPv6-mPvD

- pvdd: A Daemon to manage PvD IDs and Additional Data
- Linux Kernel patch for RA processing
- iproute tool patch to display PvD IDs
- Wireshark dissector
- RADVD and ODHCPD sending PvD ID

IPv6 mPvD + NEAT + SADR + Capport

Tom Jones

WINIVERSITY OF LETE 101 Hackathon

ABERDEEN LETE 101 Hackathon

LILLIA TO THE LETE 101 HACKATHON Hack & Interrop

Pierre Pfister

Eric Vyncke

Wengin Shao

Kyle Larose

Michael Di Bartolomeo

